Pathways and challenges for efficient solar-thermal desalination

被引:392
|
作者
Wang, Zhangxin [1 ,2 ]
Horseman, Thomas [1 ]
Straub, Anthony P. [3 ]
Yip, Ngai Yin [4 ,5 ]
Li, Deyu [6 ]
Elimelech, Menachem [2 ]
Lin, Shihong [1 ,7 ]
机构
[1] Vanderbilt Univ, Dept Civil & Environm Engn, Nashville, TN 37235 USA
[2] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA
[3] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA
[4] Columbia Univ, Dept Earth & Environm Engn, New York, NY 10027 USA
[5] Columbia Univ, Columbia Water Ctr, New York, NY 10027 USA
[6] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[7] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
GAP MEMBRANE DISTILLATION; TO-HEAT CONVERSION; SEAWATER DESALINATION; WATER DESALINATION; REVERSE-OSMOSIS; ENERGY-CONSUMPTION; STEAM-GENERATION; BLACK TITANIA; WASTE-WATER; ONE SUN;
D O I
10.1126/sciadv.aax0763
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar-thermal desalination (STD) is a potentially low-cost, sustainable approach for providing high-quality fresh water in the absence of water and energy infrastructures. Despite recent efforts to advance STD by improving heat-absorbing materials and system designs, the best strategies for maximizing STD performance remain uncertain. To address this problem, we identify three major steps in distillation-based STD: (i) light-to-heat energy conversion, (ii) thermal vapor generation, and (iii) conversion of vapor to water via condensation. Using specific water productivity as a quantitative metric for energy efficiency, we show that efficient recovery of the latent heat of condensation is critical for STD performance enhancement, because solar vapor generation has already been pushed toward its performance limit. We also demonstrate that STD cannot compete with photovoltaic reverse osmosis desalination in energy efficiency. We conclude by emphasizing the importance of factors other than energy efficiency, including cost, ease of maintenance, and applicability to hypersaline waters.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Sodium functionalised carbon nanofibers draw solution for a solar-thermal forward osmosis water desalination system
    Aende, Aondohemba
    Gardy, Jabbar
    Edokali, Mohamed
    Harbottle, David
    Hassanpour, Ali
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 203 : 130 - 139
  • [32] Simultaneous Solar-Thermal Desalination and Catalytic Degradation of Wastewater Containing Both Salt Ions and Organic Contaminants
    Jiao, Fan-Zhen
    Wu, Jing
    Zhang, Tingting
    Pan, Rui-Jie
    Wang, Zhi-Hao
    Yu, Zhong-Zhen
    Qu, Jin
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (34) : 41007 - 41018
  • [33] Title High Solar-Thermal Conversion Aerogel for Efficient Atmospheric Water Harvesting
    Wang, Xiangbing
    Ma, Guofu
    Cui, Shuzhen
    Sun, Kanjun
    Li, Wenbin
    Peng, Hui
    SMALL, 2024, 20 (12)
  • [34] Spain powers ahead with solar-thermal
    Catanzaro, Michele
    PHYSICS WORLD, 2009, 22 (10) : 9 - 9
  • [35] SOLAR-THERMAL ENERGY-CONVERSION
    SOULE, DE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1978, 176 (SEP): : 13 - 13
  • [36] Solar-thermal upwind power plant
    Schiel, W.
    Schlaich, J.
    Brennstoff-Waerme-Kraft, 1988, 40 (11): : 444 - 449
  • [37] SELECTIVE SURFACES FOR SOLAR-THERMAL CONVERSION
    MASTERSON, KD
    JOURNAL OF SOLID STATE CHEMISTRY, 1977, 22 (01) : 41 - 49
  • [38] SOLAR-THERMAL HYDROGEN-PRODUCTION
    SCHULE, M
    BRENNSTOFF-WARME-KRAFT, 1989, 41 (03): : 101 - 104
  • [39] Metal hydrides for solar-thermal applications
    Lloyd, GM
    Kim, KJ
    Razani, A
    PROCEEDINGS OF THE 1998 AMERICAN SOLAR ENERGY SOCIETY ANNUAL CONFERENCE, 1998, : 439 - 444
  • [40] Solar-Thermal Water Evaporation: A Review
    Pang, Yunsong
    Zhang, Jiajia
    Ma, Ruimin
    Qu, Zhiguo
    Lee, Eungkyu
    Luo, Tengfei
    ACS ENERGY LETTERS, 2020, 5 (02): : 437 - 456