Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy

被引:50
|
作者
Xu, Zijuan [1 ]
Li, Zhongtao [1 ]
Tong, Yang [3 ]
Zhang, Weidong [1 ]
Wu, Zhenggang [1 ,2 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Hunan Prov Key Lab Spray Deposit Technol & Applic, Changsha 410082, Peoples R China
[2] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Peoples R China
[3] Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2009, Oak Ridge, TN 37831 USA
基金
中国国家自然科学基金;
关键词
High entropy alloy; Non-equiatomic alloy; Microstructure; Melting and solidification; Mechanical behavior; SOLID-SOLUTION; DEFORMATION MECHANISMS; SLUGGISH DIFFUSION; TENSILE PROPERTIES; TRACER DIFFUSION; PHASE-STABILITY; SINGLE-CRYSTAL; PRECIPITATION; PLASTICITY; CU;
D O I
10.1016/j.jmst.2020.03.078
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High entropy alloy (HEA)-based alloy design is experiencing a conceptual broadening from equiatomic alloys to non-equiatomic alloys. To provide experimental basis for designing Cu-rich non-equiatomic HEAs, in the current study, a dual phase (Cu-rich and CoCrFeNi-rich phases) face-centered cubic CoCrFeNiCu4 alloy was systematically investigated. We provided initial and experiment-based understanding of the behavioral change of the alloy during a variety of thermal cycles and thermomechanical processing. The current results indicate that, during heating, preferred precipitation of Cu-rich particles occurs, leading to more pronounced compositional differences between the two constituent FCC phases and increased relative volume fraction of the Cu-rich phase. The Alloy exhibits a continuous melting and discontinuous solidification of the Cu-rich and CoCrFeNi-rich phases. After being cold-rolled to similar to 90 % thickness reduction, the alloy exhibits a recrystallization temperature higher than 800 degrees C. Annealing at 300 and 500 degrees C led to strength reduction and/or ductility decrease; further increasing annealing temperature monotonically caused softening and ductilization due to decreased density of pre-existing dislocations. The yield-drop phenomena observed for the 900 degrees C- and 1000 degrees C-annealed specimens are associated with the locking of pre-existing dislocations by some "atmosphere", the nature of which warrants further elucidation. (C) 2020 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 50 条
  • [41] Aging temperature role on precipitation hardening in a non-equiatomic AlCoCrFeNiTi high-entropy alloy
    Nandal, Vickey
    Hariharan, K.
    Sarvesha, R.
    Singh, Sudhanshu S.
    Huang, E-Wen
    Chang, Yao-Jen
    Yeh, An-Chou
    Neelakantan, Suresh
    Jain, Jayant
    MATERIALS SCIENCE AND TECHNOLOGY, 2021, 37 (15) : 1270 - 1279
  • [42] Designing the composition and optimizing the mechanical properties of non-equiatomic FeCoNiTi high-entropy alloys
    Li, Wei
    Gao, Qing
    Ren, Junqiang
    Wang, Qi
    Li, Junchen
    Xue, Hongtao
    Lu, Xuefeng
    Tang, Fuling
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 29 : 376 - 385
  • [43] Aging temperature role on precipitation hardening in a non-equiatomic AlCoCrFeNiTi high-entropy alloy
    Nandal, Vickey
    Hariharan, K.
    Sarvesha, R.
    Singh, Sudhanshu S.
    Huang, E.-Wen
    Chang, Yao-Jen
    Yeh, An-Chou
    Neelakantan, Suresh
    Jain, Jayant
    Materials Science and Technology (United Kingdom), 2021, 37 (15): : 1270 - 1279
  • [44] Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy
    Zibing An
    Shengcheng Mao
    Yinong Liu
    Hao Zhou
    Yadi Zhai
    Zhiyong Tian
    Cuixiu Liu
    Ze Zhang
    Xiaodong Han
    Journal of Materials Science & Technology, 2021, 92 (33) : 195 - 207
  • [45] Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy
    An, Zibing
    Mao, Shengcheng
    Liu, Yinong
    Zhou, Hao
    Zhai, Yadi
    Tian, Zhiyong
    Liu, Cuixiu
    Zhang, Ze
    Han, Xiaodong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 92 : 195 - 207
  • [46] Corrosion behavior of a non-equiatomic CoCrFeNiTi high-entropy alloy: A comparison with 304 stainless steel in simulated body fluids
    Lu, Qingqing
    Chen, Xiaohong
    Tian, Wei
    Wang, Hao
    Liu, Ping
    Zhou, Honglei
    Fu, Shaoli
    Gao, Yuhang
    Wan, Maoyuan
    Wang, Xinjiao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 897
  • [47] Plasticity and strength of an equiatomic and a non-equiatomic HfNbTaTiZr high entropy alloy during uniaxial loading : a molecular dynamics simulation study
    Bordoloi, Puja
    Hazarika, Manash Protim
    Tripathi, Ajay
    Chakraborty, Somendra Nath
    MATERIALS RESEARCH EXPRESS, 2024, 11 (09)
  • [48] Corrosion behavior of a non-equiatomic CoCrFeNiTi high-entropy alloy: A comparison with 304 stainless steel in simulated body fluids
    Lu, Qingqing
    Chen, Xiaohong
    Tian, Wei
    Wang, Hao
    Liu, Ping
    Zhou, Honglei
    Fu, Shaoli
    Gao, Yuhang
    Wan, Maoyuan
    Wang, Xinjiao
    Journal of Alloys and Compounds, 2022, 897
  • [49] Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy
    Zuo, Tingting
    Yang, Xiao
    Liaw, Peter K.
    Zhang, Yong
    INTERMETALLICS, 2015, 67 : 171 - 176
  • [50] Laser powder bed fusion of a non-equiatomic FeNiCoAl-based high- entropy alloy: Printability, microstructure, and mechanical properties
    Sun, Qinyao
    Du, Dafan
    He, Lin
    Dong, Anping
    Zhang, Cheng
    Sun, Baode
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938