A finite-difference scheme to model Switched Complementary Linear Systems

被引:0
|
作者
Gutierrez-Pachas, Daniel A. [1 ]
Mazorche, Sandro R. [2 ]
机构
[1] Univ Catolica San Pablo Arequipa, Dept Comp Sci, Arequipa, Peru
[2] Univ Fed Juiz Fora, Dept Matemat, Juiz De Fora, MG, Brazil
关键词
Switched complementarity linear systems; Finite difference method; Mixed complementarity problems; ALGORITHM;
D O I
10.1109/CLEI56649.2022.9959941
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Developing efficient numerical techniques to model complex systems is valuable, and their main contribution is to reduce computational costs. This work presents a numerical approach that deals with this difficulty by incorporating a concise formulation to understand the dynamic of complementarity switched systems using the finite difference method. We introduce a discrete-time numerical version of the Switched Complementary Linear System and convert it into a mixed complementarity problem. In addition, we compute the numerical solution of the dynamics of a DC-DC boost converter by combining our proposal with the Feasible Directions Algorithm for Mixed Nonlinear Complementarity Problems.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Hybrid finite-difference scheme for solving the dispersion equation
    Tsai, TL
    Yang, JC
    Huang, LH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2002, 128 (01): : 78 - 86
  • [42] Quantum Finite-Difference Time-Domain Scheme
    Na, Dong-Yeop
    Chew, Weng Cho
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM 2020), 2020, : 62 - 63
  • [43] THE CONVERGENCE OF A FINITE-DIFFERENCE SCHEME FOR A NONLINEAR EVOLUTION EQUATION
    TIKHOMIROVA, EI
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1986, 26 (03): : 33 - 39
  • [44] A Finite-Difference Scheme for Discontinuous Solutions of theUsadel Equations
    Khapaev, M. M.
    Kupriyanov, M. Yu.
    DIFFERENTIAL EQUATIONS, 2024, 60 (07) : 985 - 991
  • [45] A UNIFORM FINITE-DIFFERENCE SCHEME FOR THE INVESTIGATION OF NONUNIFORM FLOW
    GOLOVIZNIN, VP
    ZHMAKIN, AI
    DIFFERENTIAL EQUATIONS, 1982, 18 (07) : 809 - 813
  • [46] A FINITE-DIFFERENCE SCHEME FOR THE HEAT-CONDUCTION EQUATION
    LIVNE, E
    GLASNER, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 58 (01) : 59 - 66
  • [48] An explicit finite-difference scheme for simulation of moving particles
    Perrin, A
    Hu, HH
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (01) : 166 - 187
  • [49] FINITE-DIFFERENCE SCHEME TO SOLVE SCHRODINGER-EQUATIONS
    CHEN, RQ
    XU, ZH
    SUN, L
    PHYSICAL REVIEW E, 1993, 47 (05): : 3799 - 3802
  • [50] FINITE-DIFFERENCE SCHEME FOR UNSTEADY PIPE-FLOWS
    LAKSHMINARAYANAN, PA
    JANAKIRAMAN, PA
    GAJENDRABABU, MK
    MURTHY, BS
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1979, 21 (09) : 557 - 566