NextSV: a meta-caller for structural variants from low-coverage long-read sequencing data

被引:20
|
作者
Fang, Li [1 ,2 ,3 ]
Hu, Jiang [1 ]
Wang, Depeng [1 ]
Wang, Kai [2 ,3 ,4 ,5 ]
机构
[1] Grandomics Biosci, Beijing 102206, Peoples R China
[2] Childrens Hosp Philadelphia, Raymond G Perelman Ctr Cellular & Mol Therapeut, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Pathol & Lab Med, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Columbia Univ, Dept Biomed Informat, Med Ctr, New York, NY 10032 USA
[5] Columbia Univ, Inst Genom Med, Med Ctr, New York, NY 10032 USA
来源
BMC BIOINFORMATICS | 2018年 / 19卷
关键词
Long-read sequencing; Structural variants; Low coverage; PacBio; DE-NOVO MUTATIONS; HUMAN GENOME; DISEASE; MECHANISMS; CANCER;
D O I
10.1186/s12859-018-2207-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Structural variants (SVs) in human genomes are implicated in a variety of human diseases. Long-read sequencing delivers much longer read lengths than short-read sequencing and may greatly improve SV detection. However, due to the relatively high cost of long-read sequencing, it is unclear what coverage is needed and how to optimally use the aligners and SV callers. Results: In this study, we developed NextSV, a meta-caller to perform SV calling from low coverage long-read sequencing data. NextSV integrates three aligners and three SV callers and generates two integrated call sets (sensitive/stringent) for different analysis purposes. We evaluated SV calling performance of NextSV under different PacBio coverages on two personal genomes, NA12878 and HX1. Our results showed that, compared with running any single SV caller, NextSV stringent call set had higher precision and balanced accuracy (F1 score) while NextSV sensitive call set had a higher recall. At 10X coverage, the recall of NextSV sensitive call set was 93.5 to 94.1% for deletions and 87.9 to 93.2% for insertions, indicating that similar to 10X coverage might be an optimal coverage to use in practice, considering the balance between the sequencing costs and the recall rates. We further evaluated the Mendelian errors on an Ashkenazi Jewish trio dataset. Conclusions: Our results provide useful guidelines for SV detection from low coverage whole-genome PacBio data and we expect that NextSV will facilitate the analysis of SVs on long-read sequencing data.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] In it for the long run: perspectives on exploiting long-read sequencing in livestock for population scale studies of structural variants
    Nguyen, Tuan V.
    Vander Jagt, Christy J.
    Wang, Jianghui
    Daetwyler, Hans D.
    Xiang, Ruidong
    Goddard, Michael E.
    Nguyen, Loan T.
    Ross, Elizabeth M.
    Hayes, Ben J.
    Chamberlain, Amanda J.
    MacLeod, Iona M.
    [J]. GENETICS SELECTION EVOLUTION, 2023, 55 (01)
  • [22] Structural Variants Selected during Yak Domestication Inferred from Long-Read Whole-Genome Sequencing
    Zhang, Shangzhe
    Liu, Wenyu
    Liu, Xinfeng
    Du, Xin
    Zhang, Ke
    Zhang, Yang
    Song, Yongwu
    Zi, Yunnan
    Qiu, Qiang
    Lenstra, Johannes A.
    Liu, Jianquan
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2021, 38 (09) : 3676 - 3680
  • [23] Long-read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant
    Chawla, Harmeet Singh
    Lee, HueyTyng
    Gabur, Iulian
    Vollrath, Paul
    Tamilselvan-Nattar-Amutha, Suriya
    Obermeier, Christian
    Schiessl, Sarah V.
    Song, Jia-Ming
    Liu, Kede
    Guo, Liang
    Parkin, Isobel A. P.
    Snowdon, Rod J.
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2021, 19 (02) : 240 - 250
  • [24] Improved Characterization of Complex β-Globin Gene Cluster Structural Variants Using Long-Read Sequencing
    Rangan, Aruna
    Hein, Molly S.
    Jenkinson, William G.
    Koganti, Tejaswi
    Aleff, Ross A.
    Hilker, Christopher A.
    Blommel, Joseph H.
    Porter, Tavanna R.
    Swanson, Kenneth C.
    Lundquist, Patrick
    Nguyen, Phuong L.
    Shi, Min
    He, Rong
    Viswanatha, David S.
    Jen, Jin
    Klee, Eric W.
    Kipp, Benjamin R.
    Hoyer, James D.
    Wieben, Eric D.
    Oliveira, Jennifer L.
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2021, 23 (12): : 1732 - 1740
  • [25] Population-Scale Long-Read Sequencing to Catalog Structural Variants in Parkinson's Disease
    Billingsley, K.
    [J]. MOVEMENT DISORDERS, 2023, 38 : S466 - S467
  • [26] Comparison of structural variants detected by optical mapping with long-read next-generation sequencing
    Savara, Jakub
    Novosad, Tomas
    Gajdos, Petr
    Kriegova, Eva
    [J]. BIOINFORMATICS, 2021, 37 (20) : 3398 - 3404
  • [27] Targeted long-read sequencing identifies and characterizes structural variants in cases of inherited platelet disorders
    Zamora-Canovas, Ana
    Morena-Barrio, Belen de la
    Marin-Quilez, Ana
    Sierra-Aisa, Cristina
    Malea, Christoph
    Fernandez-Mosteirin, Nuria
    Trapero-Marugan, Maria
    Padilla, Jose
    Garrido-Rodriguez, Pedro
    Sanchez-Fuentes, Ana
    Rodriguez-Alen, Agustin
    Gomez-Gonzalez, Pedro Luis
    Revilla, Nuria
    de la Morena-Barrio, Maria Eugenia
    Bastida, Jose Maria
    Corral, Javier
    Rivera, Jose
    Lozano, Maria L.
    [J]. JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2024, 22 (03) : 851 - 859
  • [28] Peering into the gaps: Long-read sequencing illuminates structural variants and genomic evolution in the Australasian snapper
    Blommaert, Julie
    Sandoval-Castillo, Jonathan
    Beheregaray, Luciano B.
    Wellenreuther, Maren
    [J]. GENOMICS, 2024, 116 (05)
  • [29] Identification of individual root-knot nematodes using low coverage long-read sequencing
    Sellers, Graham S.
    Jeffares, Daniel C.
    Lawson, Bex
    Prior, Tom
    Lunt, David H.
    [J]. PLOS ONE, 2021, 16 (12):
  • [30] Correction: In it for the long run: perspectives on exploiting long-read sequencing in livestock for population scale studies of structural variants
    Tuan V. Nguyen
    Christy J. Vander Jagt
    Jianghui Wang
    Hans D. Daetwyler
    Ruidong Xiang
    Michael E. Goddard
    Loan T. Nguyen
    Elizabeth M. Ross
    Ben J. Hayes
    Amanda J. Chamberlain
    Iona M. MacLeod
    [J]. Genetics Selection Evolution, 55