A stratification approach for modeling two-dimensional cell complexes

被引:11
|
作者
Pesco, S [1 ]
Tavares, G [1 ]
Lopes, H [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio De Janeiro, Brazil
来源
COMPUTERS & GRAPHICS-UK | 2004年 / 28卷 / 02期
关键词
curve; surface; solid and object representations; boundary representations; object hierarchies; cell complex stratification; Handlebody theory;
D O I
10.1016/j.cag.2003.12.009
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This work presents a stratification approach for modeling two-dimensional cell complexes. It introduces the concept of combinatorial stratification and uses the Handlebody theory for cell complexes so as to propose a new representation called Handle-Cell (HC-Rep). This representation deals not only with objects with different dimensionality but also with non-manifolds models. The HC-Rep scheme includes a data structure and a complete set of operators. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:235 / 247
页数:13
相关论文
共 50 条
  • [21] Modeling approach for two-dimensional distributed transducers of arbitrary spatial distribution
    Sullivan, Jeanne M.
    Hubbard, James E.
    Burke, Shawn E.
    1996, (99):
  • [22] Embedding Approach to Modeling Electromagnetic Fields in a Complex Two-Dimensional Environment
    Tijhuis, Anton
    Franchois, Ann
    Geffrin, Jean-Michel
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2018, 2018
  • [23] AN APPLICATION OF THE GEOSTATISTICAL APPROACH TO THE INVERSE PROBLEM IN TWO-DIMENSIONAL GROUNDWATER MODELING
    HOEKSEMA, RJ
    KITANIDIS, PK
    WATER RESOURCES RESEARCH, 1984, 20 (07) : 1003 - 1020
  • [24] A two-dimensional population density approach to modeling the dLGN/PGN network
    Huertas, Marco A.
    Smith, Gregory D.
    NEUROCOMPUTING, 2006, 69 (10-12) : 1286 - 1290
  • [25] Two-Dimensional Evolutionary Spectrum Approach to Nonstationary Fading Channel Modeling
    Chen, Zhengchuan
    Wang, Qing
    Wu, Dapeng Oliver
    Fan, Pingyi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (03) : 1083 - 1097
  • [26] Decompositions of two-dimensional simplicial complexes
    Hachimori, Masahiro
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2307 - 2312
  • [27] Multiscale two-dimensional modeling of a motile simple-shaped cell
    Rubinstein, B
    Jacobson, K
    Mogilner, A
    MULTISCALE MODELING & SIMULATION, 2005, 3 (02): : 413 - 439
  • [28] Modeling of two-dimensional random fields
    Jankowski, R
    Walukiewicz, H
    PROBABILISTIC ENGINEERING MECHANICS, 1997, 12 (02) : 115 - 121
  • [29] TWO-DIMENSIONAL GROUNDWATER MODELING WITH MICROCOMPUTERS
    JAMES, WP
    LAZA, K
    BELL, F
    MORIDIS, G
    KIM, K
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 1987, 113 (02): : 293 - 307
  • [30] MODELING TWO-DIMENSIONAL CIRCULATING FLOW
    Lean, George H.
    Weare, T.John
    1979, 105 (01): : 17 - 26