Classification of Rheumatoid Arthritis using Machine Learning Algorithms

被引:0
|
作者
Sharon, Ho [1 ]
Elamvazuthi, I [1 ]
Lu, C. K. [1 ]
Parasuraman, S. [2 ]
Natarajan, Elango [3 ]
机构
[1] Univ Teknol PETRONAS, Dept Elect & Elect Engn, Smart Assist & Rehabil Technol SMART Res Grp, Bandar Seri Iskandar 32610, Malaysia
[2] Monash Univ Malaysia, Sch Engn, Bandar Sunway 46150, Malaysia
[3] UCSI Univ, Fac Engn Technol & Built Environm, Kuala Lumpur, Malaysia
关键词
Classification; Rheumatoid Arthritis; Machine Learning Algorithms;
D O I
10.1109/scored.2019.8896344
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Rheumatoid Arthritis (RA) is a persistent provocative ailment that effects and decimates the joints of wrist, finger, and feet. If left untreated, one can lose their ability to lead a normal life. RA is the most typical fiery joint inflammation, influencing around 1-2% of the total populace. Throughout the years, soft computing played an important part in helping ailment analysis in doctor's decision process. The main aim of this study is to investigate the possibility of applying machine learning techniques to the analysis of RA characteristics. As a preliminary work, a credible database has been identified to be used for this research. The database has outputs of array temperature values from thermal imaging for the joints of hand. Furthermore, this database which consists of 8 attributes and 32 instances, are used to determine the performance in terms of accuracy for the classification of different algorithms. In this preliminary work, ensemble algorithms such as bagging, AdaBoost and random subspace with base classifier such as random forest and SVM were trained and tested using the assessment criteria such as accuracy, precision, sensitivity and AUC using Weka tool. From the preliminary finding of this paper, it can be concluded that with base classifier SVM, bagging has better classification accuracy over the others and with base classifier random forest Adaboost slightly outperformed other models for rheumatoid arthritis dataset.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 50 条
  • [41] Diagnosis of Liver Patients using Machine Learning Classification Algorithms
    Dou, Kexin
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 531 - 536
  • [42] Classification of Abusive Comments Using Various Machine Learning Algorithms
    Chandrika, C. P.
    Kallimani, Jagadish S.
    COGNITIVE INFORMATICS AND SOFT COMPUTING, 2020, 1040 : 255 - 262
  • [43] Classification of Diseases Using Machine Learning Algorithms: A Comparative Study
    Moreno-Ibarra, Marco-Antonio
    Villuendas-Rey, Yenny
    Lytras, Miltiadis D.
    Yanez-Marquez, Cornelio
    Salgado-Ramirez, Julio-Cesar
    MATHEMATICS, 2021, 9 (15)
  • [44] An Automatic Flower Classification Approach Using Machine Learning Algorithms
    Zawbaa, Hossam M.
    Abbass, Mona
    Basha, Sameh H.
    Hazman, Maryam
    Hassenian, Abul Ella
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 895 - 901
  • [45] Classification of Terahertz Reflection Spectra using Machine Learning Algorithms
    Kristensen, Mathias Hedegaard
    Cielecki, Pawel Piotr
    Skovsen, Esben
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [46] Student Performance Prediction and Classification Using Machine Learning Algorithms
    Sekeroglu, Boran
    Dimililer, Kamil
    Tuncal, Kubra
    PROCEEDINGS OF 2019 8TH INTERNATIONAL CONFERENCE ON EDUCATIONAL AND INFORMATION TECHNOLOGY (ICEIT 2019), 2019, : 7 - 11
  • [47] Road Marking Detection and Classification Using Machine Learning Algorithms
    Chen, Tairui
    Chen, Zhilu
    Shi, Quan
    Huang, Xinming
    2015 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2015, : 617 - 621
  • [48] Comprehensive DDoS Attack Classification Using Machine Learning Algorithms
    Ussatova, Olga
    Zhumabekova, Aidana
    Begimbayeva, Yenlik
    Matson, Eric T.
    Ussatov, Nikita
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 577 - 594
  • [49] Classification and Investigation of Alzheimer Disease Using Machine Learning Algorithms
    Madiwalar, Shweta A.
    Patil, Sujata
    Shashidhar, H.
    Parameshachari, B. D.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (13): : 15 - 20
  • [50] Predictors of treatment changes in patients with rheumatoid arthritis using machine learning
    Liede, Alexander
    Krueger, Whitney
    Li, Linyan
    Liu, Yuhang
    Pan, Yi
    Brauer, Michelle
    Kim, Seoyoung
    Steinberg, Earl
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 : 134 - 134