Maps between curves and arithmetic obstructions

被引:4
|
作者
Sutherland, Andrew V. [1 ]
Voloch, Jose Felipe [2 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New Zealand
基金
美国国家科学基金会;
关键词
HASSE-WITT MATRICES; HYPERELLIPTIC CURVES; FUNCTION-FIELDS;
D O I
10.1090/conm/722/14532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X and Y be curves over a finite field. In this article we explore methods to determine whether there is a rational map from Y to X by considering L-functions of certain covers of X and Y and propose a specific family of covers to address the special case of determining when X and Y are isomorphic. We also discuss an application to factoring polynomials over finite fields.
引用
收藏
页码:167 / 175
页数:9
相关论文
共 50 条
  • [31] On Haefliger's obstructions to embeddings and transfer maps
    Kuramoto, Y
    Yasui, T
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2003, 40 (01) : 69 - 79
  • [32] An Arithmetic Progression on Quintic Curves
    Alvarado, Alejandra
    [J]. JOURNAL OF INTEGER SEQUENCES, 2009, 12 (07)
  • [33] AFTERWORD TO THE ARTICLE "ARITHMETIC ON CURVES"
    Mazur, B.
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 55 (03) : 353 - 358
  • [34] The arithmetic of stepwise offer curves
    Mestre, Guillermo
    Sanchez-Ubeda, Eugenio F.
    San Roque, Antonio Munoz
    Alonso, Estrella
    [J]. ENERGY, 2022, 239
  • [35] On arithmetic progressions on Edwards curves
    Gonzalez-Jimenez, Enrique
    [J]. ACTA ARITHMETICA, 2015, 167 (02) : 117 - 132
  • [36] On the arithmetic of certain modular curves
    Jeon, Daeyeol
    Kim, Chang Heon
    [J]. ACTA ARITHMETICA, 2007, 130 (02) : 181 - 193
  • [37] Arithmetic Progressions on Huff Curves
    Choudhry, Ajai
    [J]. JOURNAL OF INTEGER SEQUENCES, 2015, 18 (05)
  • [38] The arithmetic of genus two curves
    Shaska, T.
    Beshaj, L.
    [J]. INFORMATION SECURITY, CODING THEORY AND RELATED COMBINATORICS: INFORMATION CODING AND COMBINATORICS, 2011, 29 : 59 - 98
  • [39] On the arithmetic of twists of superelliptic curves
    Chang, Sungkon
    [J]. ACTA ARITHMETICA, 2006, 124 (04) : 371 - 389
  • [40] Arithmetic Progressions on Edwards Curves
    Moody, Dustin
    [J]. JOURNAL OF INTEGER SEQUENCES, 2011, 14 (01)