A local-global principle for Macaulay posets

被引:3
|
作者
Bezrukov, SL
Portas, X
Serra, O
机构
[1] Univ Wisconsin, Dept Math & Comp Sci, Superior, WI 54880 USA
[2] Univ Politecn Catalunya, Dept Matemat Aplicada & Telemat, ES-08034 Barcelona, Spain
关键词
local-global principle; Macaulay poset;
D O I
10.1023/A:1006381903313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the shadow minimization problem (SMP) for Cartesian powers P-n of a Macaulay poset P. Our main result is a local-global principle with respect to the lexicographic order L-n. Namely, we show that under certain conditions the shadow of any initial segment of the order L-n for n greater than or equal to 3 is minimal iff it is so for n = 2. These conditions include such poset properties as additivity, shadow increasing, final shadow increasing and being rank-greedy. We also show that these conditions are essentially necessary for the lexicographic order to provide nestedness in the SMP.
引用
收藏
页码:57 / 76
页数:20
相关论文
共 50 条