Modification of the Active Layer/PEDOT:PSS Interface by Solvent Additives Resulting in Improvement of the Performance of Organic Solar Cells

被引:17
|
作者
Synooka, Olesia [1 ,2 ]
Kretschmer, Florian [3 ,4 ]
Hager, Martin D. [3 ,4 ]
Himmerlich, Marcel [1 ,2 ]
Krischok, Stefan [1 ,2 ]
Gehrig, Dominik [5 ]
Laquai, Frederic [5 ]
Schubert, Ulrich S. [3 ,4 ]
Gobsch, Gerhard [1 ,2 ]
Hoppe, Harald [1 ,2 ]
机构
[1] Tech Univ Ilmenau, Inst Phys, D-98693 Ilmenau, Germany
[2] Tech Univ Ilmenau, Inst Mikro & Nanotechnol, D-98693 Ilmenau, Germany
[3] Univ Jena, Lab Organ & Macromol Chem IOMC, D-07743 Jena, Germany
[4] Univ Jena, JCSM, D-07743 Jena, Germany
[5] Max Planck Inst Polymer Res, Max Planck Res Grp Organ Optoelect, D-55128 Mainz, Germany
关键词
additives; dipole moment; copolymer; solar cell; PEDOT:PSS; morphology; CHARGE-TRANSFER EXCITONS; EFFICIENCY ENHANCEMENT; CONJUGATED POLYMER; PHASE-SEPARATION; THIN-FILMS; MORPHOLOGY; CONDUCTIVITY; SULFONATE); NETWORK;
D O I
10.1021/am503284b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The influence of various polar solvent additives with different dipole moments has been investigated since the performance of a photovoltaic device comprising a donor acceptor copolymer (benzothiadiazole-fluorene-diketopyrrolopyrrole (BTD-F-DKPP)) and phenyl-C-60-butyric acid methyl ester (PCBM) was notably increased. A common approach for controlling bulk heterojunction morphology and thereby improving the solar cell performance involves the use of solvent additives exhibiting boiling points higher than that of the surrounding solvent in order to allow the fullerene to aggregate during the host solvent evaporation and film solidification. In contrast to that, we report the application of polar solvent additives with widely varied dipole moments, where intentionally no dependence on their boiling points was applied. We found that an appropriate amount of the additive can improve all solar cell parameters. This beneficial effect could be largely attributed to a modification of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-active layer interface within the device layer stack, which was successfully reproduced for polymer solar cells based on the commonly used PCDTBT (poly[N-900-hepta-decanyl-2,7-carbazole-aft-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)]) copolymer.
引用
收藏
页码:11068 / 11081
页数:14
相关论文
共 50 条
  • [41] Performance improvement of polymer solar cells with binary additives induced morphology optimization and interface modification simultaneously
    Dai, Tingting
    Li, Xiong
    Zhang, Yingying
    Xu, Denghui
    Geng, Aicong
    Zhao, Jia
    Chen, Xiaobai
    SOLAR ENERGY, 2020, 201 : 330 - 338
  • [42] Alcohol solvent treatment of PEDOT:PSS hole transport layer for optimized inverted perovskite solar cells
    Yue Liu
    Hongkun Cai
    Yinhuan Chu
    Jian Su
    Xiaofang Ye
    Jian Ni
    Juan Li
    Jianjun Zhang
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 12765 - 12774
  • [43] Series of polar alcohol-additives assisted improvement in the PEDOT:PSS film property and bulk-heterojunction organic solar cell performance
    Zheng, Yanqiong
    Yu, Junle
    Tang, Jie
    Yang, Fang
    Wang, Chao
    Wei, Bin
    Li, Xifeng
    Adachi, Chihaya
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (25)
  • [44] Performance of Si/PEDOT:PSS Solar Cell Controlled by Dipole Moment of Additives
    Sakata, Toshiki
    Ikeda, Natsumi
    Koganezawa, Tomoyuki
    Kajiya, Daisuke
    Saitow, Ken-ichi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (33): : 20130 - 20135
  • [45] Performance improvement of inverted bulk heterojunction solar cells by use of gold nanoparticles modified PEDOT: PSS as an anode buffer layer
    Syarif, Nur Fadhilah
    Merdeka, Muhammad Cikal
    Hidayat, Rahmat
    Wulandari, Priastuti
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2024,
  • [46] PEDOT:PSS as back contact for CdTe solar cells and the effect of PEDOT:PSS conductivity on device performance
    Wang, Weining
    Paudel, Naba Raj
    Yan, Yanfa
    Duarte, Fernanda
    Mount, Michael
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (02) : 1057 - 1061
  • [47] PEDOT:PSS as back contact for CdTe solar cells and the effect of PEDOT:PSS conductivity on device performance
    Weining Wang
    Naba Raj Paudel
    Yanfa Yan
    Fernanda Duarte
    Michael Mount
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 1057 - 1061
  • [48] Performance Improvement of PEDOT:PSS/N-Si Heterojunction Solar Cells by Alkaline Etching
    Cheng Li
    Zudong He
    Qidi Wang
    Jiasen Liu
    Shaoyuan Li
    Xiuhua Chen
    Wenhui Ma
    Yuanchih Chang
    Silicon, 2022, 14 : 2299 - 2307
  • [49] Performance Improvement of PEDOT:PSS/N-Si Heterojunction Solar Cells by Alkaline Etching
    Li, Cheng
    He, Zudong
    Wang, Qidi
    Liu, Jiasen
    Li, Shaoyuan
    Chen, Xiuhua
    Ma, Wenhui
    Chang, Yuanchih
    SILICON, 2022, 14 (05) : 2299 - 2307
  • [50] Photovoltaic analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells
    Savva, Achilleas
    Georgiou, Efthymios
    Papazoglou, Giannis
    Chrusou, Alexandra Z.
    Kapnisis, Konstantinos
    Choulis, Stelios A.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 132 : 507 - 514