A rate-dependent cohesive continuum model for the study of crack dynamics

被引:15
|
作者
Nguyen, TD [1 ]
Govindjee, S
Klein, PA
Gao, H
机构
[1] Stanford Univ, Dept Mech Engn, Div Mech & Computat, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Civil Engn, Berkeley, CA 94720 USA
[3] Sandia Natl Labs, Sci Based Mat Modeling Dept, Livermore, CA 94551 USA
[4] Max Planck Inst Met Phys, Dept Theory Mesoscop Phenomena, D-70569 Stuttgart, Germany
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
dynamic fracture; nonlinear viscoelasticity; cohesive model; crack propagation; internal bond model;
D O I
10.1016/j.cma.2003.09.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A rate-dependent cohesive continuum model is developed to represent material particles interacting in a viscous medium. Interactions between material particles are modeled using a cohesive force law while microstructural resistance to relaxation is represented by a phenomenological continuum viscosity function. The model exhibits two failure mechanisms, elastic bond breaking and viscous weakening, which combine to induce rate dependence in the cohesive strength, fracture energy, and cohesive state wave speed. The model is used to simulate dynamic crack propagation. Results display rate-dependent terminal speeds which correspond to the cohesive strength and not to the local driving force; thus supporting the local limiting speed hypothesis. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:3239 / 3265
页数:27
相关论文
共 50 条
  • [21] Cohesive crack model with rate-dependent opening and viscoelasticity: II. Numerical algorithm, behavior and size effect
    Li, YN
    Bazant, ZP
    INTERNATIONAL JOURNAL OF FRACTURE, 1997, 86 (03) : 267 - 288
  • [22] Cohesive Crack Model with Rate-Dependent Opening and Viscoelasticity: II. Numerical Algorithm, Behavior and Size Effect
    Yuan-Neng Li
    Zdeněk P. Bažant
    International Journal of Fracture, 1997, 86 : 267 - 288
  • [23] A rate-dependent cohesive zone model for adhesive damage considering fibrillation
    Yang, Zhuoran
    Zhu, Zhongmeng
    Yao, Chengbin
    Xia, Yan
    Chen, Kang
    Jiang, Han
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 234
  • [24] Rate-dependent smeared crack model in transient dynamic analyses
    Ren, Z
    Bicanic, N
    ADVANCES IN FINITE ELEMENT TECHNOLOGY, 1996, : 319 - 329
  • [25] Rate dependent cohesive zone model for fatigue crack growth
    Zhang, Qinbo
    Xu, Zihan
    Tao, Weiming
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 271
  • [26] RATE-DEPENDENT CRITERION FOR CRACK GROWTH
    CHRISTENSEN, RM
    INTERNATIONAL JOURNAL OF FRACTURE, 1979, 15 (01) : 3 - 21
  • [27] Rate-Dependent Crack Propagation in Polyethylene
    Kroon, Martin
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON THEORETICAL, APPLIED AND EXPERIMENTAL MECHANICS, 2019, 5 : 194 - 198
  • [28] Rate-dependent elastic and elasto-plastic cohesive zone models for dynamic crack propagation
    Salih, S.
    Davey, K.
    Zou, Z.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 90 : 95 - 115
  • [29] Rate-dependent cohesive zone model of the interface between HTPB propellant and insulation
    Chen, Xiong
    Niu, Ran-Ming
    Zheng, Jian
    Jia, Deng
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2015, 30 (11): : 2787 - 2793
  • [30] A rate-dependent cohesive zone model with the effects of interfacial viscoelasticity and progressive damage
    Zhao, Gang
    Xu, Jiaqi
    Feng, Yajie
    Tang, Jianbo
    Chen, Yousi
    Xin, Shiqing
    Jian, Xigao
    Li, Shuxin
    Zhang, Shouhai
    Xu, Jian
    ENGINEERING FRACTURE MECHANICS, 2021, 248