XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model

被引:118
|
作者
Cheng, Ho Kei [1 ]
Schwing, Alexander G. [1 ]
机构
[1] Univ Illinois, Champaign, IL 61820 USA
来源
关键词
D O I
10.1007/978-3-031-19815-1_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present XMem, a video object segmentation architecture for long videos with unified feature memory stores inspired by the Atkinson-Shiffrin memory model. Prior work on video object segmentation typically only uses one type of feature memory. For videos longer than a minute, a single feature memory model tightly links memory consumption and accuracy. In contrast, following the Atkinson-Shiffrin model, we develop an architecture that incorporates multiple independent yet deeply-connected feature memory stores: a rapidly updated sensory memory, a high-resolution working memory, and a compact thus sustained long-term memory. Crucially, we develop a memory potentiation algorithm that routinely consolidates actively used working memory elements into the long-term memory, which avoids memory explosion and minimizes performance decay for long-term prediction. Combined with a new memory reading mechanism, XMem greatly exceeds state-of-the-art performance on long-video datasets while being on par with state-of-the-art methods (that do not work on long videos) on short-video datasets.
引用
收藏
页码:640 / 658
页数:19
相关论文
共 50 条
  • [31] Object-based coding for long-term archive of surveillance video
    Vetro, A
    Haga, T
    Sumi, K
    Sun, HF
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL II, PROCEEDINGS, 2003, : 417 - 420
  • [32] Learning Long-Term Structural Dependencies for Video Salient Object Detection
    Wang, Bo
    Liu, Wenxi
    Han, Guoqiang
    He, Shengfeng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 9017 - 9031
  • [33] The Long-term Object Tracking with Online Model Learning
    Liu, Zhen
    Zhao, Long
    2014 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2014, : 1526 - 1529
  • [34] Prefrontal Cortex Represents Long-Term Memory of Object Values for Months
    Ghazizadeh, Ali
    Hong, Simon
    Hikosaka, Okihide
    CURRENT BIOLOGY, 2018, 28 (14) : 2206 - +
  • [35] Anterior retrosplenial cortex is required for long-term object recognition memory
    Ana Belén de Landeta
    Magdalena Pereyra
    Jorge H. Medina
    Cynthia Katche
    Scientific Reports, 10
  • [36] Modulation of long-term memory for object recognition via HDAC inhibition
    Stefanko, Daniel P.
    Barrett, Ruth M.
    Ly, Alexandra R.
    Reolon, Gustavo K.
    Wood, Marcelo A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (23) : 9447 - 9452
  • [37] Anterior retrosplenial cortex is required for long-term object recognition memory
    Belen de Landeta, Ana
    Pereyra, Magdalena
    Medina, Jorge H.
    Katche, Cynthia
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [38] Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking
    Chao Ma
    Jia-Bin Huang
    Xiaokang Yang
    Ming-Hsuan Yang
    International Journal of Computer Vision, 2018, 126 : 771 - 796
  • [39] Conversion of short-term to long-term memory in the novel object recognition paradigm
    Moore, Shannon J.
    Deshpande, Kaivalya
    Stinnett, Gwen S.
    Seasholtz, Audrey F.
    Murphy, Geoffrey G.
    NEUROBIOLOGY OF LEARNING AND MEMORY, 2013, 105 : 174 - 185
  • [40] Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking
    Ma, Chao
    Huang, Jia-Bin
    Yang, Xiaokang
    Yang, Ming-Hsuan
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (08) : 771 - 796