Basic4Cseq: an R/Bioconductor package for analyzing 4C-seq data

被引:14
|
作者
Walter, Carolin [1 ]
Schuetzmann, Daniel [2 ]
Rosenbauer, Frank [2 ]
Dugas, Martin [1 ]
机构
[1] Univ Munster, Inst Med Informat, D-48149 Munster, Germany
[2] Univ Munster, Inst Mol Tumorbiol, D-48149 Munster, Germany
关键词
D O I
10.1093/bioinformatics/btu497
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Basic4Cseq is an R/Bioconductor package for basic filtering, analysis and subsequent near-cis visualization of 4C-seq data. The package processes aligned 4C-seq raw data stored in binary alignment/map (BAM) format and maps the short reads to a corresponding virtual fragment library. Functions are included to create virtual fragment libraries providing chromosome position and further information on 4C-seq fragments (length and uniqueness of the fragment ends, and blindness of a fragment) for any BSGenome package. An optional filter is included for BAM files to remove invalid 4C-seq reads, and further filter functions are offered for 4C-seq fragments. Additionally, basic quality controls based on the read distribution are included. Fragment data in the vicinity of the experiment's viewpoint are visualized as coverage plot based on a running median approach and a multi-scale contact profile. Wig files or csv files of the fragment data can be exported for further analyses and visualizations of interactions with other programs.
引用
收藏
页码:3268 / 3269
页数:2
相关论文
共 50 条
  • [21] An optimized 4C-seq protocol based on cistrome and epigenome data in the mouse RAW264.7 macrophage cell line
    Huang, Zhiqiang
    Wang, Cheng
    Treuter, Eckardt
    Fan, Rongrong
    STAR PROTOCOLS, 2022, 3 (02):
  • [22] lmerSeq: an R package for analyzing transformed RNA-Seq data with linear mixed effects models
    Brian E. Vestal
    Elizabeth Wynn
    Camille M. Moore
    BMC Bioinformatics, 23
  • [23] TREEEXP1.0: R Package for Analyzing Expression Evolution Based on RNA-Seq Data
    Ruan, Hang
    Su, Zhixi
    Gu, Xun
    JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION, 2016, 326 (07) : 394 - 402
  • [24] lmerSeq: an R package for analyzing transformed RNA-Seq data with linear mixed effects models
    Vestal, Brian E.
    Wynn, Elizabeth
    Moore, Camille M.
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [25] CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data
    duVerle, David A.
    Yotsukura, Sohiya
    Nomura, Seitaro
    Aburatani, Hiroyuki
    Tsuda, Koji
    BMC BIOINFORMATICS, 2016, 17
  • [26] NewWave: a scalable R/Bioconductor package for the dimensionality reduction and batch effect removal of single-cell RNA-seq data
    Agostinis, Federico
    Romualdi, Chiara
    Sales, Gabriele
    Risso, Davide
    BIOINFORMATICS, 2022, 38 (09) : 2648 - 2650
  • [27] CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data
    David A. duVerle
    Sohiya Yotsukura
    Seitaro Nomura
    Hiroyuki Aburatani
    Koji Tsuda
    BMC Bioinformatics, 17
  • [28] Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions
    Jiang, Tingting
    Raviram, Ramya
    Snetkova, Valentina
    Rocha, Pedro P.
    Proudhon, Charlotte
    Badri, Sana
    Bonneau, Richard
    Skok, Jane A.
    Kluger, Yuval
    NUCLEIC ACIDS RESEARCH, 2016, 44 (18) : 8714 - 8725
  • [29] Circularized Chromatin Conformation Capture (4C-seq) Identified Differences in Genome Organization Between Rod and Cone Photoreceptors
    Ruzycki, Philip Andrew
    Chen, Shiming
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [30] Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: From fixation to computation
    Splinter, Erik
    de Wit, Elzo
    van de Werken, Harmen J. G.
    Klous, Petra
    de Laat, Wouter
    METHODS, 2012, 58 (03) : 221 - 230