Band gap engineering in huge-gap semiconductor SrZrO3 for visible-light photocatalysis

被引:72
|
作者
Guo, Zhonglu [1 ,2 ]
Sa, Baisheng [1 ,3 ]
Pathak, Biswarup [4 ]
Zhou, Jian [1 ,2 ]
Ahuja, Rajeev [5 ,6 ]
Sun, Zhimei [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Coll Mat, Dept Mat Sci & Engn, Xiamen 361005, Peoples R China
[2] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[3] Xiamen Univ, Collaborat Innovat Ctr Chem Energy Mat, Xiamen 361005, Peoples R China
[4] Indian Inst Technol Indore, Sch Basic Sci, Discipline Chem, Indore 452017, India
[5] Uppsala Univ, Dept Phys & Astron, Condensed Matter Theory Grp, S-75120 Uppsala, Sweden
[6] Royal Inst Technol, Dept Mat & Engn, S-10044 Stockholm, Sweden
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Ab initio calculation; Visible-light photocatalysis; Huge band gap; Water splitting; WATER; HYDROGEN; SRTIO3; 1ST-PRINCIPLES; PHOTOLYSIS; SR2TA2O7; OXIDE; HOLE; WO3; SR;
D O I
10.1016/j.ijhydene.2013.11.055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using SrZrO3 (SZO, the intrinsic band gap being 5.6 eV) as an example, we have investigated the design principles for huge-gap semiconductors with band gap larger than 5 eV for the application of efficient visible-light driven photocatalysts for splitting water into hydrogen. Based on the hybrid density function calculations, the electronic structures of mono-doped and co-doped SZO are investigated to obtain design principles for improving their photocatalytic activity in hydrogen generation. The cationic-anionic co-doping in SZO could reduce the band gap significantly and its electronic band position is excellent for the visible-light photocatalysis. This work reports a new type of candidate material for visible-light driven photocatalysis, i.e., huge-gap semiconductors with band gap larger than 5 eV. Furthermore, based on the present results we have proposed the design principles for band gap engineering that provides general guideline for other huge-gap semiconductors. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:2042 / 2048
页数:7
相关论文
共 50 条
  • [41] Modification of Wide-Band-Gap Oxide Semiconductors with Cobalt Hydroxide Nanoclusters for Visible-Light Water Oxidation
    Maeda, Kazuhiko
    Ishimaki, Koki
    Tokunaga, Yuki
    Lu, Daling
    Eguchi, Miharu
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (29) : 8309 - 8313
  • [42] PROPOSAL AND VERIFICATION OF A NEW VISIBLE-LIGHT EMITTER BASED ON WIDE BAND GAP-II-VI SEMICONDUCTORS
    PHILLIPS, MC
    WANG, MW
    SWENBERG, JF
    MCCALDIN, JO
    MCGILL, TC
    APPLIED PHYSICS LETTERS, 1992, 61 (16) : 1962 - 1964
  • [43] Visible light active SrZrO3/PbS nanocomposite for photoconversion of CO2 into methane and methanol
    Alharbi, F. F.
    Aman, Salma
    Ahmad, Naseeb
    Ejaz, Syeda Rabia
    Manzoor, Sumaira
    Khosa, Rabia Yasmin
    Nisa, Mehar Un
    Ashiq, Muhammad Naeem
    Farid, Hafiz Muhammad Tahir
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (03):
  • [44] Indium induced band gap tailoring in AgGa1-xInxS2 chalcopyrite structure for visible light photocatalysis
    Jang, Jum Suk
    Borse, Pramod H.
    Lee, Jae Sung
    Choi, Sun Hee
    Kim, Hyun Gyu
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (15):
  • [45] Synergic effect of the TiO2-CeO2 nanoconjugate system on the band-gap for visible light photocatalysis
    Contreras-Garcia, M. E.
    Lorena Garcia-Benjume, M.
    Macias-Andres, Victor I.
    Barajas-Ledesma, E.
    Medina-Flores, A.
    Espitia-Cabrera, M. I.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2014, 183 : 78 - 85
  • [46] Band gap engineering and visible light response for GaS monolayer by isovalent anion-cation codoping
    Bai, Yujie
    Deng, Kaiming
    Kan, Erjun
    MATERIALS CHEMISTRY AND PHYSICS, 2017, 198 : 275 - 282
  • [47] Band Gap Tuning of ZnO/In2S3 Core/Shell Nanorod Arrays for Enhanced Visible-Light-Driven Photocatalysis
    Khanchandani, Sunita
    Kundu, Simanta
    Patra, Amitava
    Ganguli, Ashok K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (11): : 5558 - 5567
  • [48] Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface
    Jahangir-Moghadam, Mohammadreza
    Ahmadi-Majlan, Kamyar
    Shen, Xuan
    Droubay, Timothy
    Bowden, Mark
    Chrysler, Matthew
    Su, Dong
    Chambers, Scott A.
    Ngai, Joseph H.
    ADVANCED MATERIALS INTERFACES, 2015, 2 (04):
  • [49] Gas sensitization and photochromism of CaTiO3-? for visible-light photocatalysis
    Chen, Jingwen
    Wang, Chong
    Li, Jibiao
    Ni, Jiupai
    Tang, Yu
    Irvine, John T. S.
    Ni, Chengsheng
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [50] Band gap engineering of ZnMnO diluted magnetic semiconductor by alloying with ZnS
    Yunusov, Z. A.
    Yuldashev, Sh. U.
    Kwon, Y. H.
    Kim, D. Y.
    Lee, S. J.
    Jeon, H. C.
    Jung, H.
    Kim, A.
    Kang, T. W.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 446 : 206 - 209