Extremal non-compactness of composition operators with linear fractional symbol

被引:11
|
作者
Basor, Estelle L. [1 ]
Retsek, Dylan Q. [1 ]
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
基金
美国国家科学基金会;
关键词
composition operators; extremal non-compactness; cohyponormality;
D O I
10.1016/j.jmaa.2005.09.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We realize the norms of certain composition operators C phi with linear fractional symbol acting on the Hardy space in terms of the roots of associated hypergeometric functions. This realization leads to simple necessary and sufficient conditions on phi for C phi to exhibit extremal non-compactness, establishes equivalence of cohyponormality and cosubnormality of composition operators with linear fractional symbol, and yields a complete classification of those linear fractional phi that induce composition operators whose norms are determined by the action of the adjoint C phi* on the normalized reproducing kemels in H-2. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:749 / 763
页数:15
相关论文
共 50 条
  • [31] INTERPOLATION OF A MEASURE OF WEAK NON-COMPACTNESS
    Szwedek, Radoslaw
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) : 537 - 552
  • [32] KURATOWSKI MEASURE OF NON-COMPACTNESS REVISITED
    LOWEN, R
    QUARTERLY JOURNAL OF MATHEMATICS, 1988, 39 (154): : 235 - 254
  • [33] A NOTE ON PROBABILISTIC MEASURES OF NON-COMPACTNESS
    TAN, DH
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1983, 28 (04): : 283 - 288
  • [34] Interpolation of the measure of non-compactness of bilinear operators among quasi-Banach spaces
    Besoy, Blanca F.
    Cobos, Fernando
    JOURNAL OF APPROXIMATION THEORY, 2019, 243 : 25 - 44
  • [35] Matrix mappings and Hausdorff measure of non-compactness on Riesz difference spaces of fractional order
    Yaying, Taja
    Hazarika, Bipan
    Et, Mikail
    JOURNAL OF ANALYSIS, 2021, 29 (04): : 1443 - 1460
  • [36] Matrix mappings and Hausdorff measure of non-compactness on Riesz difference spaces of fractional order
    Taja Yaying
    Bipan Hazarika
    Mikail Et
    The Journal of Analysis, 2021, 29 : 1443 - 1460
  • [37] Existence of Solutions to Non-Linear Quadratic Integral Equations via Measure of Non-Compactness
    Karmakar, Surajit
    Garai, Hiranmoy
    Dey, Lakshmi Kanta
    Chanda, Ankush
    FILOMAT, 2022, 36 (01) : 73 - 87
  • [38] Dentability indices with respect to measures of non-compactness
    Raja, M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (01) : 273 - 286
  • [39] ON INTERPOLATION OF THE MEASURE OF NON-COMPACTNESS BY THE COMPLEX METHOD
    Szwedek, Radoslaw
    QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (01): : 323 - 332
  • [40] LOGARITHMIC INTERPOLATION METHODS AND MEASURE OF NON-COMPACTNESS
    Besoy, Blanca F.
    Cobos, Fernando
    QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (01): : 73 - 95