Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers

被引:30
|
作者
Maruzhenko, Oleksii [1 ,2 ]
Mamunya, Yevgen [1 ]
Boiteux, Gisele [3 ]
Pusz, Slawomira [4 ]
Szeluga, Urszula [4 ]
Pruvost, Sebastien [2 ]
机构
[1] Inst Macromol Chem NAS Ukraine, 48 Kharkivske Chaussee, UA-02160 Kiev, Ukraine
[2] Univ Lyon, INSA Lyon, UMR CNRS 5223, IMP Ingn Mat Polymeres, F-69621 Villeurbanne, France
[3] Univ Lyon, Univ Lyon 1, UMR CNRS 5223, Imp Ingn Mat Polymeres, F-69622 Villeurbanne, France
[4] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowskiej 34, Zabrze, Poland
关键词
Polymer composites; Nanocomposites; Segregated structure; Electrical conductivity; Thermal conductivity; WEIGHT POLYETHYLENE COMPOSITES; PERCOLATION-THRESHOLD; MECHANICAL-PROPERTIES; CONDUCTIVITY; NANOTUBE; BEHAVIOR; FILLERS; PRELOCALIZATION; NANOCOMPOSITES; PERMITTIVITY;
D O I
10.1016/j.ijheatmasstransfer.2019.04.043
中图分类号
O414.1 [热力学];
学科分类号
摘要
This article presents the study of electrical and thermal properties of segregated polymer composites based on ultra-high-molecular-weight polyethylene (UHMWPE) filled with carbon fillers (nanofiller graphene (Gr), microfiller anthracite (A) and hybrid filler Gr/A). It is shown that the formation of a segregated structure with an ordered distribution of the filler leads to a high local concentration in the intergrain boundaries, which causes a lower percolation threshold. Thus, in the composite UHMWPE + A, the percolation threshold is an order of magnitude lower than for a system with a random distribution of the filler. The segregated composite with nanofiller UHMWPE + Gr provides a 14-fold lower percolation threshold than the composite with microfiller UHMWPE + A. Composite with the hybrid filler Gr/A also exhibits a low percolation threshold close to the UHMWPE + Gr. The plot of the thermal conductivity versus filler content does not show the percolation behavior and obeys the equation of the Lichtenecker. The thermal conductivity parameter lambda(f) in the segregated system is 4.4 times higher than for the uniform distribution of the filler that indicates an increased thermal transport through the filler phase located at the boundaries in the segregated structure. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [21] Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
    Ogbonna, Victor Ekene
    Popoola, A. Patricia I.
    Popoola, Olawale M.
    Adeosun, Samson O.
    JOURNAL OF POLYMER ENGINEERING, 2021, 41 (09) : 768 - 787
  • [22] Enhanced thermal-mechanical properties of polymer composites with hybrid boron nitride nanofillers
    Yan, Haiyan
    Tang, Yanxia
    Su, Juling
    Yang, Xiaoyan
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 114 (02): : 331 - 337
  • [23] Investigation of Thermal and Electrical Properties for Conductive Polymer Composites
    Juwhari, Hassan K.
    Abuobaid, Ahmad
    Zihlif, Awwad M.
    Elimat, Ziad M.
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (10) : 5705 - 5714
  • [24] Investigation of Thermal and Electrical Properties for Conductive Polymer Composites
    Hassan K. Juwhari
    Ahmad Abuobaid
    Awwad M. Zihlif
    Ziad M. Elimat
    Journal of Electronic Materials, 2017, 46 : 5705 - 5714
  • [25] Carbon nanofiber polymer composites: Electrical and mechanical properties
    Lake, ML
    Glasgow, DG
    Kwag, C
    Burton, DJ
    47TH INTERNATIONAL SAMPE SYMPOSIUM AND EXHIBITION, VOL 47, BOOKS 1 AND 2: AFFORDABLE MATERIALS TECHNOLOGY-PLATFORM TO GLOBAL VALUE AND PERFORMANCE, 2002, : 1794 - 1800
  • [26] Ordered nanoporous polymer–carbon composites
    Minkee Choi
    Ryong Ryoo
    Nature Materials, 2003, 2 : 473 - 476
  • [27] Morphology and electrical conductivity of polyazomethine/hybrid carbon nanofillers composites
    Bronnikov, Sergei
    Kostromin, Sergei
    Saprykina, Natalya
    Asandulesa, Mihai
    Podshivalov, Aleksandr
    Cozan, Vasile
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2018, 26 (11) : 709 - 714
  • [28] Thermal and electrical properties of polypropylene/carbon nanotube composites
    Gao, Jinglong
    Liu, Yanhui
    MATERIALS AND MANUFACTURING, PTS 1 AND 2, 2011, 299-300 : 802 - 805
  • [29] On thermal conductivity of micro- and nanocellular polymer foams
    Sundarram, Sriharsha S.
    Li, Wei
    POLYMER ENGINEERING AND SCIENCE, 2013, 53 (09): : 1901 - 1909
  • [30] Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites
    Jung, Jinwoo
    Kim, Jaewoo
    Uhm, Young Rang
    Jeon, Jae-Kyun
    Lee, Sol
    Lee, Hi Min
    Rhee, Chang Kyu
    THERMOCHIMICA ACTA, 2010, 499 (1-2) : 8 - 14