ITC Commentary on the Prediction of Digoxin Clinical Drug-Drug Interactions from In Vitro Transporter Assays

被引:25
|
作者
Lee, C. A. [1 ]
Kalvass, J. C. [2 ]
Galetin, A. [3 ]
Zamek-Gliszczynski, M. J. [4 ]
机构
[1] QPS DMPK Hepat Biosci, Res Triangle Pk, NC USA
[2] AbbVie, Drug Metab & Pharmacokinet, N Chicago, IL USA
[3] Univ Manchester, Ctr Appl Pharmacokinet Res, Manchester Pharm Sch, Manchester, Lancs, England
[4] GlaxoSmithKline, Drug Metab & Pharmacokinet, Res Triangle Pk, NC 27709 USA
关键词
P-GLYCOPROTEIN; PARAMETER; CELLS;
D O I
10.1038/clpt.2014.94
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The"P-glycoprotein"IC50 working group reported an 18- to 796-fold interlaboratory range in digoxin transport IC50 (inhibitor concentration achieving 50% of maximal inhibition), raising concerns about the predictability of clinical transporter-based drug-drug interactions (DDIs) from in vitro data. This Commentary describes complexities of digoxin transport, which involve both uptake and efflux processes. We caution against attributing digoxin transport IC50 specifically to P-glycoprotein (P-gp) or extending this composite uptake/efflux IC50 variability to individual transporters. Clinical digoxin interaction studies should be interpreted as evaluation of digoxin safety, not P-gp DDIs.
引用
收藏
页码:298 / 301
页数:4
相关论文
共 50 条
  • [31] Application of Different In Vitro Systems for Prediction of In Vivo Induction Drug-Drug Interactions
    Templeton, Ian E.
    Houston, J. Brian
    Galetin, Aleksandra
    DRUG METABOLISM REVIEWS, 2010, 42 : 114 - 114
  • [32] Treating depression: Potential drug-drug interactions: Commentary
    Ereshefsky, L
    JOURNAL OF CLINICAL PSYCHOPHARMACOLOGY, 1996, 16 (03) : S50 - S53
  • [33] Computer prediction of the drug-drug interactions severity
    Dmitriev, A.
    Filimonov, D.
    Lagunin, A.
    Rudik, A.
    Karasev, D.
    Murtazalieva, K.
    Poroikov, V.
    FEBS OPEN BIO, 2018, 8 : 353 - 353
  • [34] Sense and nonsense in the prediction of drug-drug interactions
    Lin, JH
    CURRENT DRUG METABOLISM, 2000, 1 (04) : 305 - 331
  • [35] Network Based Prediction of Drug-Drug Interactions
    Gunawardena, S. D. L.
    Weerasinghe, A. R.
    Wijesinghe, M. W. A. C. R.
    2017 17TH INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER) - 2017, 2017, : 78 - 85
  • [36] Predicting drug-drug interactions:: In vitro veritas?
    Tucker, GT
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2004, 23 : S13 - S13
  • [37] Study and Prediction of Pharmacokinetic Drug-Drug Interactions
    Hu, Zhe-Yi
    CURRENT DRUG METABOLISM, 2014, 15 (08) : 759 - 760
  • [38] QSAR Modeling and Prediction of Drug-Drug Interactions
    Zakharov, Alexey V.
    Varlamova, Ekaterina V.
    Lagunin, Alexey A.
    Dmitriev, Alexander V.
    Muratov, Eugene N.
    Fourches, Denis
    Kuz'min, Victor E.
    Poroikov, Vladimir V.
    Tropsha, Alexander
    Nicklaus, Marc C.
    MOLECULAR PHARMACEUTICS, 2016, 13 (02) : 545 - 556
  • [39] In Vitro Evaluation of Hepatic Transporter-Mediated Clinical Drug-Drug Interactions: Hepatocyte Model Optimization and Retrospective Investigation
    Bi, Yi-an
    Kimoto, Emi
    Sevidal, Samantha
    Jones, Hannah M.
    Barton, Hugh A.
    Kempshall, Sarah
    Whalen, Kevin M.
    Zhang, Hui
    Ji, Chengjie
    Fenner, Katherine S.
    El-Kattan, Ayman F.
    Lai, Yurong
    DRUG METABOLISM AND DISPOSITION, 2012, 40 (06) : 1085 - 1092
  • [40] Prediction of Clinical Transporter-Mediated Drug-Drug Interactions via Comeasurement of Pitavastatin and Eltrombopag in Human Hepatocyte Models
    Carter, Simon J.
    Chouhan, Bhavik
    Sharma, Pradeep
    Chappell, Michael J.
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2020, 9 (04): : 211 - 221