An alternative way of estimating a cumulative logistic model with complex survey data

被引:0
|
作者
Kott, Phillip S. [1 ]
Frechtel, Peter [1 ]
机构
[1] RTI Int, 6110 Execut Blvd, Rockville, MD 20852 USA
关键词
Parallel-lines assumption; Design-sensitive estimation; Standard model; Extended model;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
When fitting an ordered categorical variable with L > 2 levels to a set of covariates onto complex survey data, it is common to assume that the elements of the population fit a simple cumulative logistic regression model (proportional-odds logistic-regression model). This means the probability that the categorical variable is at or below some level is a binary logistic function of the model covariates. Moreover, except for the intercept, the values of the logistic-regression parameters are the same at each level. The conventional "design-based" method used for fitting the proportional-odds model is based on pseudo-maximum likelihood. We compare estimates computed using pseudo-maximum likelihood with those computed by assuming an alternative design-sensitive robust model-based framework. We show with a simple numerical example how estimates using the two approaches can differ. The alternative approach is easily extended to fit a general cumulative logistic model, in which the parallel-lines assumption can fail. A test of that assumption easily follows.
引用
收藏
页码:339 / 347
页数:9
相关论文
共 50 条
  • [21] Multinomial Logistic Mixed Models for Clustered Categorical Data in a Complex Survey Sampling Setup
    Brajendra C. Sutradhar
    Sankhya A, 2022, 84 : 743 - 789
  • [22] A Logistic Regression Model for Estimating Transport Accident Deaths Using Verbal Autopsy Data
    Klinjun, Nuntaporn
    Lim, Apiradee
    Bundhamcharoen, Kanitta
    ASIA-PACIFIC JOURNAL OF PUBLIC HEALTH, 2015, 27 (03) : 286 - 292
  • [23] Estimating cumulative prospect theory parameters from an international survey
    Marc Oliver Rieger
    Mei Wang
    Thorsten Hens
    Theory and Decision, 2017, 82 : 567 - 596
  • [24] Estimating cumulative prospect theory parameters from an international survey
    Rieger, Marc Oliver
    Wang, Mei
    Hens, Thorsten
    THEORY AND DECISION, 2017, 82 (04) : 567 - 596
  • [25] Methods of Estimating or Accounting for Neighborhood Associations With Health Using Complex Survey Data
    Brumback, Babette A.
    Cai, Zhuangyu
    Dailey, Amy B.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (10) : 1255 - 1263
  • [26] Causal inference of latent classes in complex survey data with the estimating equation framework
    Kang, Joseph
    He, Yulei
    Hong, Jaeyoung
    Esie, Precious
    Bernstein, Kyle T.
    STATISTICS IN MEDICINE, 2020, 39 (03) : 207 - 219
  • [27] Classification by Estimating the Cumulative Distribution Function for Small Data
    Zhu, Meng-Xian
    Shao, Yuan-Hai
    IEEE ACCESS, 2023, 11 : 41142 - 41157
  • [28] Use of the Logistic Function to Model Cumulative Volumes of Spray Nozzles
    Cerruto, Emanuele
    Ramirez-Cuesta, Juan Miguel
    Privitera, Salvatore
    Pascuzzi, Simone
    Manetto, Giuseppe
    PROCEEDINGS OF 2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY, METROAGRIFOR, 2023, : 635 - 639
  • [29] The Application of the Cumulative Logistic Regression Model to Automated Essay Scoring
    Haberman, Shelby J.
    Sinharay, Sandip
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2010, 35 (05) : 586 - 602
  • [30] Bootstrap variance estimation with survey data when estimating model parameters
    Beaumont, Jean-Francois
    Charest, Anne-Sophie
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 4450 - 4461