Twisted Quantum Toroidal Algebras Tq-(g)

被引:0
|
作者
Jing, Naihuan [1 ,2 ]
Liu, Rongjia [2 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] S China Univ Technol, Sch Sci, Guangzhou 510640, Guangdong, Peoples R China
关键词
quantum algebras; toroidal algebras; vertex operators; Serre relations; VERTEX REPRESENTATIONS; CONSTRUCTION;
D O I
10.1007/s11005-014-0711-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a principally graded quantum loop algebra for the Kac-Moody algebra. As a special case a twisted analog of the quantum toroidal algebra is obtained together with the quantum Serre relations.
引用
收藏
页码:1137 / 1145
页数:9
相关论文
共 50 条
  • [41] Finite dimensional modules over quantum toroidal algebras
    Xia, Limeng
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (03) : 593 - 600
  • [42] Mackey TQ-algebras
    Abel, Mati
    Zarate-Rodriguez, Yuliana de Jesus
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (02) : 339 - 353
  • [43] Properties of TQ-algebras
    Abel, Mati
    Zelazko, Wieslaw
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2011, 60 (03) : 141 - 148
  • [44] Quantum Symmetries of the Twisted Tensor Products of C*-Algebras
    Jyotishman Bhowmick
    Arnab Mandal
    Sutanu Roy
    Adam Skalski
    Communications in Mathematical Physics, 2019, 368 : 1051 - 1085
  • [45] ADDENDUM TO "DRINFELD REALIZATION OF TWISTED QUANTUM AFFINE ALGEBRAS"
    Jing, Naihuan
    Zhang, Honglian
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (09) : 3484 - 3488
  • [46] Quantum Heisenberg manifolds as twisted groupoid C*-algebras
    Kang, Sooran
    Kumjian, Alex
    Packer, Judith
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (02) : 1039 - 1060
  • [47] Two-parameter twisted quantum affine algebras
    Jing, Naihuan
    Zhang, Honglian
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (09)
  • [48] Q Q∼-Systems for Twisted Quantum Affine Algebras
    Wang, Keyu
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (02) : 1137 - 1179
  • [49] TWISTED FUNCTION ALGEBRAS ON A COMPACT QUANTUM GROUP AND THEIR REPRESENTATIONS
    LEVENDORSKII, SZ
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1990, 24 (04) : 330 - 332
  • [50] Quantum Symmetries of the Twisted Tensor Products of C*-Algebras
    Bhowmick, Jyotishman
    Mandal, Arnab
    Roy, Sutanu
    Skalski, Adam
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 368 (03) : 1051 - 1085