Industrial Fault Detection Based on Discriminant Enhanced Stacking Auto-Encoder Model

被引:5
|
作者
Liu, Bowen [1 ,2 ]
Chai, Yi [1 ,2 ]
Jiang, Yutao [1 ,2 ]
Wang, Yiming [1 ,2 ]
机构
[1] Chongqing Univ, Coll Automat, Chongqing 400044, Peoples R China
[2] Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Sec, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; SAE; spectral regression kernel discriminant analysis; fault detection;
D O I
10.3390/electronics11233993
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the recent years, deep learning has been widely used in process monitoring due to its strong ability to extract features. However, with the increasing layers of the deep network, the compression of features by the deep model will lead to the loss of some valuable information and affect the model's performance. To solve this problem, a fault detection method based on a discriminant enhanced stacked auto-encoder is proposed. An enhanced stacked auto-encoder network structure is designed, and the original data is added to each hidden layer in the model pre-training process to solve the problem of information loss in the feature extraction process. Then the self-encoding network is combined with spectral regression kernel discriminant analysis. The fault category information is introduced into the features to optimize the features and enhance the discrimination of the extracted features. The Euclidean distance is used for fault detection based on the extracted features. From the Tennessee Eastman process experiment, it can be found that the detection accuracy of this method is about 9.4% higher than that of the traditional stacked auto-encoder method.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Detection Algorithm of the Mimicry Attack based on Variational Auto-Encoder
    Wang, Qunke
    Fang, Lanting
    Zhu, Zhenchao
    Huang, Jie
    51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN-W 2021), 2021, : 114 - 120
  • [32] A Deep Auto-Encoder based Approach for Intrusion Detection System
    Farahnakian, Fahimeh
    Heikkonen, Jukka
    2018 20TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2018, : 178 - 183
  • [33] Outlier Detection for Power Data Based on Contractive Auto-Encoder
    Lu, Yuan
    Leng, Xiaojie
    Xu, Kang
    Luan, Weiping
    Yang, Wei
    Li, Jing
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENCE AND SYSTEM, AISS 2019, 2019,
  • [34] A Fault Diagnosis Model Based on Kernel Auto-encoder and Improved Chaos Firefly Optimization Algorithm
    Wang Fengtao
    Liu Xiaofei
    Ma Linjie
    Deng Gang
    Han Qingkai
    Li Hongkun
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 526 - 531
  • [35] Manifold Sparse Auto-Encoder for Machine Fault Diagnosis
    Zhang, Shaohui
    Wang, Man
    Yang, Fangfang
    Li, Weihua
    IEEE SENSORS JOURNAL, 2020, 20 (15) : 8328 - 8335
  • [36] Blurred Image Region Detection based on Stacked Auto-Encoder
    Zhou, Yuan
    Yang, Jianxing
    Chen, Yang
    Kung, Sun-Yuan
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2959 - 2964
  • [37] MPSAutodetect: A Malicious Powershell Script Detection Model Based on Stacked Denoising Auto-Encoder
    Alahmadi, Amal
    Alkhraan, Norah
    BinSaeedan, Wojdan
    COMPUTERS & SECURITY, 2022, 116
  • [38] A Deep Learning Based on Sparse Auto-Encoder with MCSA for Broken Rotor Bar Fault Detection and Diagnosis
    Seghiour, Abdellatif
    Chouder, Aissa
    Ait Abbas, Hamou
    Salmi, Chawki
    Ben Saadia, Oussama
    PROCEEDINGS 2018 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL SCIENCES AND TECHNOLOGIES IN MAGHREB (CISTEM), 2018, : 882 - 887
  • [39] Sparse Tensor Auto-Encoder for Saliency Detection
    Yang, Shuyuan
    Wang, Junxiao
    IEEE ACCESS, 2020, 8 : 2924 - 2930
  • [40] Dynamic convolutional gated recurrent unit attention auto-encoder for feature learning and fault detection in dynamic industrial processes
    Yu, Jianbo
    Li, Shijin
    Liu, Xing
    Gao, Yanfeng
    Wang, Shijin
    Liu, Changhui
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2023, 61 (21) : 7434 - 7452