Poisson hierarchy of discrete strings

被引:4
|
作者
Ioannidou, Theodora [1 ]
Niemi, Antti J. [2 ,3 ,4 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Engn, Fac Civil Engn, Thessaloniki 54249, Greece
[2] Uppsala Univ, Dept Phys & Astron, S-75108 Uppsala, Sweden
[3] Univ Tours, Federat Denis Poisson, CNRS UMR 6083, Lab Math & Phys Theor, F-37200 Tours, France
[4] Beijing Inst Technol, Dept Phys, Beijing 100081, Peoples R China
关键词
Poisson brackets; Discrete strings; Discrete integrable models;
D O I
10.1016/j.physleta.2015.11.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:333 / 336
页数:4
相关论文
共 50 条
  • [41] Algebraic aspects of the discrete KP hierarchy
    Felipe, R
    Ongay, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 338 : 1 - 17
  • [42] Discrete AKNS-D Hierarchy
    WU Xiao-Ning Institute of Applied Mathematics
    CommunicationsinTheoreticalPhysics, 2007, 47 (03) : 385 - 389
  • [43] GAUGE HIERARCHY IN THE PRESENCE OF DISCRETE SYMMETRY
    MAGG, M
    SHAFI, Q
    WETTERICH, C
    PHYSICS LETTERS B, 1979, 87 (03) : 227 - 232
  • [44] THE DISCRETE CHIRAL-FIELD HIERARCHY
    BRUSCHI, M
    LEVI, D
    RAGNISCO, O
    LETTERE AL NUOVO CIMENTO, 1982, 33 (10): : 284 - 288
  • [45] Matrix Resolvent and the Discrete KdV Hierarchy
    Boris Dubrovin
    Di Yang
    Communications in Mathematical Physics, 2020, 377 : 1823 - 1852
  • [46] Isogonal deformation of discrete plane curves and discrete Burgers hierarchy
    Kajiwara, Kenji
    Kuroda, Toshinobu
    Matsuura, Nozomu
    PACIFIC JOURNAL OF MATHEMATICS FOR INDUSTRY, 2016, 8 : 1 - 14
  • [47] Bivariate Discrete Poisson–Lindley Distributions
    H. Papageorgiou
    Maria Vardaki
    Journal of Statistical Theory and Practice, 2022, 16
  • [48] Discrete AKNS-D hierarchy
    Wu Xiao-Ning
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 47 (03) : 385 - 389
  • [49] A discrete analog of the Poisson summation formula
    Ustinov, AV
    MATHEMATICAL NOTES, 2003, 73 (1-2) : 97 - 102
  • [50] On the solutions of generalized discrete Poisson equation
    Werpachowski, Roman
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 1877 - 1885