Numerical analysis of traveling-wave photodetectors' bandwidth using the finite-difference time-domain method

被引:16
|
作者
Kong, SC [1 ]
Lee, SJ [1 ]
Lee, JH [1 ]
Choi, YW [1 ]
机构
[1] Chung Ang Univ, Optoelect & Opt Commun Lab, Seoul 156756, South Korea
关键词
finite-difference time-domain (FDTD) method; RF optic link; traveling-wave photodetector (TWPD);
D O I
10.1109/TMTT.2002.804508
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present full-wave analysis of traveling-wave photodetectors (TWPDs) using the finite-difference time-domain (FDTD) method. Impulse response in the frequency domain is obtained after time-domain data are calculated by the FDTD method. The impulse response includes the optical field profile, carrier transit time, microwave loss, microwave dispersion, and velocity mismatch all together. Three-decibel bandwidth is analyzed with the thickness of an i-layer and waveguide width as the design parameters. It is shown how transit time and microwave characteristics affect the bandwidth according to the TWPD's length. Three-decibel bandwidth is dominated by carrier transit time in case the device length is shorter than 300-500 mum under the conditions given in this paper. However, if the device length gets longer, microwave characteristics affect the bandwidth.
引用
收藏
页码:2589 / 2597
页数:9
相关论文
共 50 条
  • [31] Improved Numerical Modeling of Terahertz Wave Propagation in Epoxy Coating with the Finite-Difference Time-Domain Method
    Tu, Wanli
    Zhong, Shuncong
    Zhang, Qiukun
    Huang, Yi
    Luo, Manting
    COATINGS, 2023, 13 (09)
  • [32] Standing-Traveling wave boundary condition for finite-difference time-domain mesh truncation
    Tan, H.Y.
    Liang, D.N.
    Liu, K.C.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2001, 29 (03): : 412 - 413
  • [33] Numerical Simulations of Electric Fields in Bone Induced by an Ultrasound Wave Using a Piezoelectric Finite-Difference Time-Domain Method
    Hosokawa, Atsushi
    2015 6TH EUROPEAN SYMPOSIUM ON ULTRASONIC CHARACTERIZATION OF BONE (ESUCB), 2015,
  • [34] Stability criterion for radial wave equation in finite-difference time-domain method
    Potter, ME
    Okoniewski, M
    ELECTRONICS LETTERS, 2001, 37 (08) : 488 - 489
  • [35] Analysis and design of mushroom-type traveling-wave electroabsorption modulator using the finite difference time domain method
    Ok, SH
    Lee, SJ
    Lee, JH
    Kong, SC
    Kim, DG
    Choi, YW
    Kim, JH
    Lee, S
    Woo, DH
    Kim, SH
    OPTOELECTRONIC INTERCONNECTS VIII, 2001, 4292 : 182 - 189
  • [36] Modelling of wave propagation in wire media using spatially dispersive finite-difference time-domain method: Numerical aspects
    Zhao, Yan
    Belov, Pavel A.
    Hao, Yang
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (06) : 1506 - 1513
  • [37] Numerical solution of the Schrodinger equation in polar coordinates using the finite-difference time-domain method
    Salehi, Mohsen
    Granpayeh, Nosrat
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (01) : 91 - 102
  • [38] Numerical simulation of antennas using three-dimensional finite-difference time-domain method
    Namiki, T
    HIGH PERFORMANCE COMPUTING ON THE INFORMATION SUPERHIGHWAY - HPC ASIA '97, PROCEEDINGS, 1997, : 437 - 443
  • [39] Computation of wave diffraction in dielectric waveguides by the finite-difference time-domain method
    Brovko, A.V.
    Manenkov, A.B.
    Mityurin, V.E.
    Rozhnev, A.G.
    Radiotekhnika i Elektronika, 2002, 47 (11): : 1304 - 1312
  • [40] Physical Rendering of Wave Effects Applying Finite-difference Time-Domain Method
    Wu, Fukun
    Zheng, Changwen
    2ND INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR EDUCATION (ICTE 2015), 2015, : 286 - 290