Reinterpreting Interpretability for Fuzzy Linguistic Descriptions of Data

被引:4
|
作者
Ramos-Soto, A. [1 ,2 ]
Pereira-Farina, M. [3 ,4 ]
机构
[1] Univ Santiago de Compostela, Ctr Singular Invest Tecnol Informac CiTIUS, Rua Jenaro de la Fuente Dominguez, Santiago De Compostela, Spain
[2] Univ Aberdeen, Dept Comp Sci, Aberdeen, Scotland
[3] Univ Santiago de Compostela, Dept Filosofia & Antropol, Santiago, Spain
[4] Univ Dundee, Ctr Argument Technol ARG Tech, Dundee, Scotland
关键词
Fuzzy sets; Linguistic summarization; Interpretability; Data-to-text; Fuzzy linguistic descriptions of data; Natural language generation; GENERATION; MECHANISM;
D O I
10.1007/978-3-319-91473-2_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We approach the problem of interpretability for fuzzy linguistic descriptions of data from a natural language generation perspective. For this, first we review the current state of linguistic descriptions of data and their use contexts as a standalone tool and as part of a natural language generation system. Then, we discuss the standard approach to interpretability for linguistic descriptions and introduce our complementary proposal, which describes the elements from linguistic descriptions of data that can influence and improve the interpretability of automatically generated texts (such as fuzzy properties, quantifiers, and truth degrees), when linguistic descriptions are used to determine relevant content within a text generation system.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [11] Comprehensiveness and interpretability of linguistic data summaries: a natural language focused perspective
    Kacprzyk, Janusz
    Zadrozny, Slawomir
    PROCEEDINGS OF THE 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR HUMAN-LIKE INTELLIGENCE (CIHLI), 2013, : 33 - 40
  • [12] Enriching linguistic descriptions of data: A framework for composite protoforms
    Ramos-Soto, A.
    Martin-Rodilla, P.
    FUZZY SETS AND SYSTEMS, 2021, 407 : 1 - 26
  • [13] Generating Textual Descriptions for Recommendation Results using Fuzzy Linguistic Summaries
    Lukasik, Szymon
    Smet, Mateusz
    Krolewski, Jaroslaw
    2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [14] CART data analysis to attain interpretability in a Fuzzy Logic Classifier
    Vagliasindi, Guido
    Arena, Paolo
    Murari, Andrea
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 1925 - +
  • [15] Interpretability issues in data-based learning, of fuzzy systems
    Mikut, R
    Jäkel, J
    Gröll, L
    FUZZY SETS AND SYSTEMS, 2005, 150 (02) : 179 - 197
  • [16] Linguistic data mining and fuzzy modelling
    Hirota, K
    Pedrycz, W
    FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 1996, : 1488 - 1492
  • [17] The linguistic summarization and the interpretability, scalability of fuzzy representations of multilevel semantic structures of word-domains
    Cat Ho Nguyen
    Thi Lan Pham
    Nguyen, Tu N.
    Cam Ha Ho
    Thu Anh Nguyen
    MICROPROCESSORS AND MICROSYSTEMS, 2021, 81 (81)
  • [18] A Model Based on Computational Perceptions for the Generation of Linguistic Descriptions of Data
    Ramos-Soto, A.
    Pereira-Farina, M.
    Bugarin, A.
    Barro, S.
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [19] Possibilistic Constrained Optimization to Tune Fuzzy Rules Formalizing Medical Knowledge by Preserving Linguistic Interpretability
    Maisto, Domenico
    Esposito, Massimo
    13TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI 2012), 2012, : 231 - 236
  • [20] Interpretability-preserving genetic optimization of linguistic terms in fuzzy models for fuzzy ordered classification: An ecological case study
    Van Broekhoven, Ester
    Adriaenssens, Veronique
    De Baets, Bernard
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2007, 44 (01) : 65 - 90