Reinterpreting Interpretability for Fuzzy Linguistic Descriptions of Data

被引:4
|
作者
Ramos-Soto, A. [1 ,2 ]
Pereira-Farina, M. [3 ,4 ]
机构
[1] Univ Santiago de Compostela, Ctr Singular Invest Tecnol Informac CiTIUS, Rua Jenaro de la Fuente Dominguez, Santiago De Compostela, Spain
[2] Univ Aberdeen, Dept Comp Sci, Aberdeen, Scotland
[3] Univ Santiago de Compostela, Dept Filosofia & Antropol, Santiago, Spain
[4] Univ Dundee, Ctr Argument Technol ARG Tech, Dundee, Scotland
关键词
Fuzzy sets; Linguistic summarization; Interpretability; Data-to-text; Fuzzy linguistic descriptions of data; Natural language generation; GENERATION; MECHANISM;
D O I
10.1007/978-3-319-91473-2_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We approach the problem of interpretability for fuzzy linguistic descriptions of data from a natural language generation perspective. For this, first we review the current state of linguistic descriptions of data and their use contexts as a standalone tool and as part of a natural language generation system. Then, we discuss the standard approach to interpretability for linguistic descriptions and introduce our complementary proposal, which describes the elements from linguistic descriptions of data that can influence and improve the interpretability of automatically generated texts (such as fuzzy properties, quantifiers, and truth degrees), when linguistic descriptions are used to determine relevant content within a text generation system.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [1] Interpretability of fuzzy linguistic summaries
    Lesot, Marie-Jeanne
    Moyse, Gilles
    Bouchon-Meunier, Bernadette
    FUZZY SETS AND SYSTEMS, 2016, 292 : 307 - 317
  • [2] Empirical study of fuzzy quantification models for linguistic descriptions of meteorological data
    Heble-Lahera, Carlos
    Cascallar-Fuentes, Andrea
    Ramos-Soto, Alejandro
    Diz, Alberto Bugarin
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [3] Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures
    Gacto, M. J.
    Alcala, R.
    Herrera, F.
    INFORMATION SCIENCES, 2011, 181 (20) : 4340 - 4360
  • [4] On the role of interpretability in fuzzy data mining
    Mencar, Corrado
    Castellano, Giovanna
    Fanelli, Anna M.
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2007, 15 (05) : 521 - 537
  • [5] On accommodating the semantic-based interpretability in evolutionary linguistic fuzzy controller
    Megherbi, Hassina
    Megherbi, Ahmed Chaouki
    Benmahammed, Khier
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (04) : 3765 - 3778
  • [6] Mining Building Energy Management System Data Using Fuzzy Anomaly Detection and Linguistic Descriptions
    Wijayasekara, Dumidu
    Linda, Ondrej
    Manic, Milos
    Rieger, Craig
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (03) : 1829 - 1840
  • [7] Generating automatic linguistic descriptions with big data
    Conde-Clemente, Patricia
    Trivino, Gracian
    Alonso, Jose M.
    INFORMATION SCIENCES, 2017, 380 : 12 - 30
  • [8] Aspects of quality evaluation in Linguistic Descriptions of Data
    Bugarin, Alberto
    Marin, Nicolas
    Sanchez, Daniel
    Trivino, Gracian
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [9] Interpretability issues in fuzzy genetics-based machine learning for linguistic modelling
    Ishibuchi, H
    Yamamoto, T
    MODELLING WITH WORDS: LEARNING, FUSION, AND REASONING WITHIN A FORMAL LINGUISTIC REPRESENTATION FRAMEWORK, 2003, 2873 : 209 - 228
  • [10] LINGUISTIC SUMMARY OF FUZZY DATA
    DICESARE, F
    SAHNOUN, Z
    BONISSONE, PP
    INFORMATION SCIENCES, 1990, 52 (02) : 141 - 152