Improvement of nonlocal Peierls-Nabarro models

被引:18
|
作者
Liu, Guisen [1 ]
Cheng, Xi [1 ,2 ]
Wang, Jian [3 ]
Chen, Kaiguo [4 ]
Shen, Yao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] Univ Nebraska, Mech & Mat Engn, Lincoln, NE 68588 USA
[4] China Acad Engn Phys, Ctr Compress Sci, Mianyang 621900, Peoples R China
基金
美国国家科学基金会;
关键词
Dislocation; Nonlocality; Peierls stress; Peierls-Nabarro model; Molecular dynamics; STACKING-FAULT ENERGY; DISLOCATION CROSS-SLIP; ELASTIC-CONSTANTS; TWIST BOUNDARIES; CORE STRUCTURE; STRESS; CRYSTALS; METALS; CU; EDGE;
D O I
10.1016/j.commatsci.2017.01.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We review the major efforts that improve the accuracy of Peierls-Nabarro (PN) model in predicting core structure and Peierls stress, and recognize that the nonlocal atomic interactions in the core region should be accounted for in calculating the dislocation energy. Although some efforts have been devoted to taking the nonlocal interaction into account, further improvement is needed to simplify the computational complexity and resolve the inconsistency between the continuum model and the discrete nature of the lattice. Here we developed a two-dimensional (2D) and a three-dimensional (3D) nonlocal semi-discrete variational Peierls-Nabarro (SVPN) models by incorporatilig the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal SVPN models are applied to dislocations with extended core in copper and compact core in iron. Molecular dynamics simulations are performed to validate the model predictions. We found that the nonlocal SVPN model (both 2D and 3D) significantly improves the prediction accuracy for dislocation core structure and Peierls stress. Moreover, the results show that the 2D and 3D models give similar predictions of the Peierls stress and dislocation core structure, when the atomic relaxation in the normal direction is allowed in the 2D model to describe the interatomic interactions in the slip plane. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 50 条
  • [41] Peierls-Nabarro potential profile of discrete nonlinear Schrodinger equation
    Al Khawaja, U.
    Al-Marzoug, S. M.
    Bahlouli, H.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 46 : 74 - 80
  • [42] REVISIT OF THE PEIERLS-NABARRO MODEL FOR EDGE DISLOCATIONS IN HILBERT SPACE
    Gao, Yuan
    Liu, Jian-Guo
    Luo, Tao
    Xiang, Yang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06): : 3177 - 3207
  • [43] PEIERLS-NABARRO POTENTIAL BARRIER FOR HIGHLY LOCALIZED NONLINEAR MODES
    KIVSHAR, YS
    CAMPBELL, DK
    PHYSICAL REVIEW E, 1993, 48 (04): : 3077 - 3081
  • [44] Existence and uniqueness of solutions to the Peierls-Nabarro model in anisotropic media
    Gao, Yuan
    Scott, James M.
    NONLINEARITY, 2024, 37 (02)
  • [45] Construction of the Peierls-Nabarro potential of a dislocation from interatomic potentials
    Koizumi, H
    Kirchner, HOK
    Suzuki, T
    PHILOSOPHICAL MAGAZINE, 2006, 86 (25-26) : 3835 - 3846
  • [46] A discrete phi(4) system without a Peierls-Nabarro barrier
    Speight, JM
    NONLINEARITY, 1997, 10 (06) : 1615 - 1625
  • [47] Discrete nonlinear Schrodinger equations free of the Peierls-Nabarro potential
    Dmitriev, S. V.
    Kevrekidis, P. G.
    Sukhorukov, A. A.
    Yoshikawa, N.
    Takeno, S.
    PHYSICS LETTERS A, 2006, 356 (4-5) : 324 - 332
  • [48] From the Peierls-Nabarro model to the equation of motion of the dislocation continuum
    Patrizi, Stefania
    Sangsawang, Tharathep
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
  • [49] Polaron dynamics and Peierls-Nabarro barrier in a discrete molecular chain
    Brizhik, L
    Cruzeiro-Hansson, L
    Eremko, A
    Olkhovska, Y
    SYNTHETIC METALS, 2000, 109 (1-3) : 113 - 116
  • [50] Soliton dynamics and Peierls-Nabarro barrier in a discrete molecular chain
    Brizhik, L
    Eremko, A
    Cruzeiro-Hansson, L
    Olkhovska, Y
    PHYSICAL REVIEW B, 2000, 61 (02) : 1129 - 1141