The operational Chow cohomology classes of a complete toric variety are identified with certain functions, called Minkowski weights, on the corresponding fan. The natural product of Chow cohomology classes makes the Minkowski weights into a commutative ring; the product is computed by a displacement in the lattice, which corresponds to a deformation in the toric variety. We show that, with rational coefficients, this ring embeds in McMullen's polytope algebra, and that the polytope algebra is the direct limit of these Chow rings, over all compactifications of a given torus. In the nonsingular case, the Minkowski weight corresponding to the Todd class is related to a certain Ehrhart polynomial. Copyright (C) 1996 Elsevier Science Ltd
机构:
Univ Buenos Aires, FCEyN, Inst Santalo, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, FCEyN, Inst Santalo, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Cortinas, G.
Haesemeyer, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USAUniv Buenos Aires, FCEyN, Inst Santalo, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Haesemeyer, C.
Walker, Mark E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nebraska, Dept Math, Lincoln, NE 68588 USAUniv Buenos Aires, FCEyN, Inst Santalo, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Walker, Mark E.
Weibel, C.
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math, New Brunswick, NJ 08901 USAUniv Buenos Aires, FCEyN, Inst Santalo, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina