Improved Bayesian regularisation using neural networks based on feature selection for software defect prediction

被引:5
|
作者
Jayanthi, R. [1 ]
Florence, M. Lilly [2 ]
机构
[1] PESIT BSC, MCA Dept, Bangalore, Karnataka, India
[2] Adhiyamaan Engn Coll, Dept Comp Sci & Engn, Hosur, Tamil Nadu, India
关键词
defect prediction model; machine learning techniques; software defect prediction; software metrics; gradient descent optimisation; gradient-based approach; feature subset selection; cross entropy error function; adaptive computation process; FAULT;
D O I
10.1504/IJCAT.2019.100297
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Demand for software-based applications has grown drastically in various real-time applications. However, software testing schemes have been developed which include manual and automatic testing. Manual testing requires human effort and chances of error may still affect the quality of software. To overcome this issue, automatic software testing techniques based on machine learning techniques have been developed. In this work, we focus on the machine learning scheme for early prediction of software defects using Levenberg-Marquardt algorithm (LM), Back Propagation (BP) and Bayesian Regularisation (BR) techniques. Bayesian regularisation achieves better performance in terms of bug prediction. However, this performance can be enhanced further. Hence, we developed a novel approach for attribute selection-based feature selection technique to improve the performance of BR classification. An extensive study is carried out with the PROMISE repository where we considered KC1 and JM1 datasets. Experimental study shows that the proposed approach achieves better performance in predicting the defects in software.
引用
收藏
页码:225 / 241
页数:17
相关论文
共 50 条
  • [31] Feature Selection and Software Defect Prediction by Different Ensemble Classifiers
    Shakhovska, Natalya
    Yakovyna, Vitaliy
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2021, PT I, 2021, 12923 : 307 - 313
  • [32] A feature selection model for software defect prediction using binary Rao optimization algorithm
    Thirumoorthy, Karpagalingam
    Britto J, Jerold John
    APPLIED SOFT COMPUTING, 2022, 131
  • [33] Applying Feature Selection to Software Defect Prediction using Multi-objective Optimization
    Chen, Xiang
    Shen, Yuxiang
    Cui, Zhanqi
    Ju, Xiaolin
    2017 IEEE 41ST ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 2, 2017, : 54 - 59
  • [34] Software Defect Prediction through Neural Network and Feature Selections
    Alkhasawneh, Mutasem Shabeb
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [35] Defect Prediction in Software Repositories with Artificial Neural Networks
    Bautista, Ana M.
    San Feliu, Tomas
    TRENDS AND APPLICATIONS IN SOFTWARE ENGINEERING, 2016, 405 : 165 - 174
  • [36] A Cluster Based Feature Selection Method for Cross-Project Software Defect Prediction
    Ni, Chao
    Liu, Wang-Shu
    Chen, Xiang
    Gu, Qing
    Chen, Dao-Xu
    Huang, Qi-Guo
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2017, 32 (06) : 1090 - 1107
  • [37] A Cluster Based Feature Selection Method for Cross-Project Software Defect Prediction
    Chao Ni
    Wang-Shu Liu
    Xiang Chen
    Qing Gu
    Dao-Xu Chen
    Qi-Guo Huang
    Journal of Computer Science and Technology, 2017, 32 : 1090 - 1107
  • [38] A software defect prediction method with metric compensation based on feature selection and transfer learning
    Chen, Jinfu
    Wang, Xiaoli
    Cai, Saihua
    Xu, Jiaping
    Chen, Jingyi
    Chen, Haibo
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2022, 23 (05) : 715 - 731
  • [39] Optimal feature selection based on Bayesian networks
    Zhao, Hui
    Xiao, Ming
    Xiao, Yi
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 597 - +
  • [40] Software Defect Prediction Using Artificial Neural Networks: A Systematic Literature Review
    Khan, Muhammad Adnan
    Elmitwally, Nouh Sabri
    Abbas, Sagheer
    Aftab, Shabib
    Ahmad, Munir
    Fayaz, Muhammad
    Khan, Faheem
    SCIENTIFIC PROGRAMMING, 2022, 2022