HANMRE - An authenticated encryption secure against side-channel attacks for nonce-misuse and lightweight approaches

被引:7
|
作者
Song Dat Phuc Tran [1 ]
Seok, Byoungjin [1 ]
Lee, Changhoon [1 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept Comp Sci & Engn, Seoul 01811, South Korea
关键词
Authenticated encryption; AEAD; Side-channel attacks; Sponge construction; Fresh re-keying; Leakage resilience; FAULT ATTACKS; ISAP;
D O I
10.1016/j.asoc.2020.106663
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Side-channel threat is a form of cryptanalysis that takes advantage of secret information leaked during program implementations, through measurement and evaluation of systematic parameters, such as execution time, power consumption and electromagnetic field (EMF) radiation. Since various sidechannel analysis techniques have applied successfully in gathering data and extracting cryptographic keys on variety of devices and platforms, including smartphones, smart cards, tablets, TVs, FPGAs and CPUs, these attacks constitute a significant risk to the security of cryptographic systems. Eliminating serious leakages is a major approach to mitigate side-channel vulnerabilities, in particular Simple Power Analysis (SPA) and Differential Power Analysis (DPA). During the last decade, several research aimed at securing cryptographic primitive algorithms against side-channel attacks, and validating possible countermeasures under assumption which its computational complexity can be estimated precisely. In this paper, we propose a hash-based authenticated nonce-misuse resistant encryption, namely HANMRE which is adaptable for a lightweight leakage resilient authenticated encryption with associated data (AEAD) scheme. The HANMRE construction has been designed for the sidechannel security achievement (including SPA and DPA attacks) and highly integrated for restrained environments with limited resource. The advantage of this scheme is ensuring the strong security developed in misuse-resistant schemes against general adversaries for authenticated encryption [1]. It also presents reasonable implementation results (especially long message handling) compared to existing authenticated encryption schemes and is expected to be a novel idea for better approaches of authenticated encryption mechanisms design in the future. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] ISA Extensions of Shuffling Against Side-Channel Attacks
    Zhou, Jiayun
    Qin, Guofeng
    Li, Lu
    Guo, Chun
    Wang, Weijia
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (03) : 761 - 773
  • [32] Extractors against side-channel attacks: weak or strong?
    Medwed, Marcel
    Standaert, Francois-Xavier
    JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2011, 1 (03) : 231 - 241
  • [33] Design and Verification of Secure Cache Wrapper against Access-driven Side-Channel Attacks
    Niazmand, Behrad
    Azad, Siavoosh Payandeh
    Jervan, Gert
    Sepulveda, Johanna
    2019 22ND EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD), 2019, : 672 - 676
  • [34] An Efficient Method against Side-Channel Attacks on ECC
    LIU Shuanggen~ 1
    2. College of Computer Information Engineering
    WuhanUniversityJournalofNaturalSciences, 2006, (06) : 1573 - 1576
  • [35] Threshold implementations against side-channel attacks and glitches
    Nikova, Svetla
    Rechberger, Christian
    Rijmen, Vincent
    INFORMATION AND COMMUNICATIONS SECURITY, PROCEEDINGS, 2006, 4307 : 529 - +
  • [36] Extractors against Side-Channel Attacks: Weak or Strong?
    Medwed, Marcel
    Standaert, Francois-Xavier
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2011, 2011, 6917 : 256 - 272
  • [37] Robust Secure Charge-Sharing Symmetric Adiabatic Logic Against Side-Channel Attacks
    Monteiro, Cancio
    Takahashi, Yasuhiro
    Sekine, Toshikazu
    2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2013, : 732 - 736
  • [38] DNNCloak: Secure DNN Models Against Memory Side-channel Based Reverse Engineering Attacks
    Che, Yuezhi
    Wang, Rujia
    2022 IEEE 40TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2022), 2022, : 89 - 96
  • [39] Compiler-Based Techniques to Secure Cryptographic Embedded Software Against Side-Channel Attacks
    Agosta, Giovanni
    Barenghi, Alessandro
    Pelosi, Gerardo
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (08) : 1550 - 1554
  • [40] Workload Characterization of a Lightweight SSL Implementation Resistant to Side-Channel Attacks
    Koschuch, Manuel
    Grossschaedl, Johann
    Payer, Udo
    Hudler, Matthias
    Krueger, Michael
    CRYPTOLOGY AND NETWORK SECURITY, 2008, 5339 : 349 - +