Confinement of gigahertz sound and light in Tamm plasmon resonators

被引:8
|
作者
Villafane, V. [1 ,2 ]
Bruchhausen, A. E. [1 ,2 ]
Jusserand, B. [3 ]
Senellart, P. [4 ,5 ]
Lemaitre, A. [4 ]
Fainstein, A. [1 ,2 ]
机构
[1] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Inst Balseiro, CNEA, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Paris 06, CNRS, UMR 7588, Inst Nanosci Paris, F-75015 Paris, France
[4] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
[5] Ecole Polytech, Dept Phys, F-91128 Palaiseau, France
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 16期
关键词
QUANTUM GROUND-STATE; RAMAN-SCATTERING ENHANCEMENT; CAVITY OPTOMECHANICS; PLANAR MICROCAVITY; ACOUSTIC PHONONS; TRANSMISSION; OSCILLATOR; GOLD;
D O I
10.1103/PhysRevB.92.165308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate theoretically and by pump-probe picosecond acoustics experiments the simultaneous confinement of light and gigahertz sound in Tamm plasmon resonators, formed by depositing a thin layer of Au onto a GaAs/AlGaAs Bragg reflector. The cavity has InGaAs quantum dots (QDs) embedded at the maximum of the confined optical field in the first GaAs layer. The different sound generation and detection mechanisms are theoretically analyzed. It is shown that the Au layer absorption and the resonant excitation of the QDs are the more efficient light-sound transducers for the coupling of near-infrared light with the confined acoustic modes, while the displacement of the interfaces is the main back-action mechanism at these energies. The prospects for the compact realization of optomechanical resonators based on Tamm plasmon cavities are discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Superfocusing and Light Confinement by Surface Plasmon Excitation Through Radially Polarized Beam
    Baida, F. I.
    Belkhir, A.
    PLASMONICS, 2009, 4 (01) : 51 - 59
  • [42] ELECTROMAGNETIC GENERATION OF GIGAHERTZ SOUND IN FERROMAGNETIC METALS
    DEWAR, G
    PHYSICAL REVIEW B, 1987, 36 (15): : 7805 - 7815
  • [43] Superfocusing and Light Confinement by Surface Plasmon Excitation Through Radially Polarized Beam
    F. I. Baida
    A. Belkhir
    Plasmonics, 2009, 4 : 51 - 59
  • [44] A gigahertz surface magneto-plasmon optical modulator
    Chan, KJ
    Irvine, SE
    Elezzabi, AY
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (05) : 571 - 579
  • [45] MODULATION OF SOUND BY SOUND IN ACOUSTIC RESONATORS
    SHALASHOV, GM
    SOVIET PHYSICS ACOUSTICS-USSR, 1983, 29 (02): : 155 - 158
  • [46] Experimental Demonstration of Reduced Light Absorption by Intracavity Metallic Layers in Tamm Plasmon-based Microcavity
    M. A. Kaliteevski
    A. A. Lazarenko
    N. D. Il’inskaya
    Yu. M. Zadiranov
    M. E. Sasin
    D. Zaitsev
    V. A. Mazlin
    P. N. Brunkov
    S. I. Pavlov
    A. Yu. Egorov
    Plasmonics, 2015, 10 : 281 - 284
  • [47] MODULATION OF SOUND BY SOUND IN METAL RESONATORS
    ZIMENKOV, SV
    NAZAROV, VE
    SOVIET PHYSICS ACOUSTICS-USSR, 1991, 37 (05): : 538 - 540
  • [48] Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay
    Farhat, Mohamed
    Guenneau, Sebastien
    Bagci, Hakan
    PHYSICAL REVIEW LETTERS, 2013, 111 (23)
  • [49] A localized surface plasmon resonance and light confinement-enhanced near-infrared light photodetector
    Lu, Rui
    Ge, Cai-Wang
    Zou, Yi-Feng
    Zheng, Kun
    Wang, Dan-Dan
    Zhang, Teng-Fei
    Luo, Lin-Bao
    LASER & PHOTONICS REVIEWS, 2016, 10 (04) : 595 - 602
  • [50] Light confinement and mode splitting in rolled-up semiconductor microtube bottle resonators
    Strelow, Ch
    Schultz, C. M.
    Rehberg, H.
    Sauer, M.
    Welsch, H.
    Stemmann, A.
    Heyn, Ch
    Heitmann, D.
    Kipp, T.
    PHYSICAL REVIEW B, 2012, 85 (15):