Confinement of gigahertz sound and light in Tamm plasmon resonators

被引:8
|
作者
Villafane, V. [1 ,2 ]
Bruchhausen, A. E. [1 ,2 ]
Jusserand, B. [3 ]
Senellart, P. [4 ,5 ]
Lemaitre, A. [4 ]
Fainstein, A. [1 ,2 ]
机构
[1] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Inst Balseiro, CNEA, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Paris 06, CNRS, UMR 7588, Inst Nanosci Paris, F-75015 Paris, France
[4] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
[5] Ecole Polytech, Dept Phys, F-91128 Palaiseau, France
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 16期
关键词
QUANTUM GROUND-STATE; RAMAN-SCATTERING ENHANCEMENT; CAVITY OPTOMECHANICS; PLANAR MICROCAVITY; ACOUSTIC PHONONS; TRANSMISSION; OSCILLATOR; GOLD;
D O I
10.1103/PhysRevB.92.165308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate theoretically and by pump-probe picosecond acoustics experiments the simultaneous confinement of light and gigahertz sound in Tamm plasmon resonators, formed by depositing a thin layer of Au onto a GaAs/AlGaAs Bragg reflector. The cavity has InGaAs quantum dots (QDs) embedded at the maximum of the confined optical field in the first GaAs layer. The different sound generation and detection mechanisms are theoretically analyzed. It is shown that the Au layer absorption and the resonant excitation of the QDs are the more efficient light-sound transducers for the coupling of near-infrared light with the confined acoustic modes, while the displacement of the interfaces is the main back-action mechanism at these energies. The prospects for the compact realization of optomechanical resonators based on Tamm plasmon cavities are discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Impact of Different Metals on the Performance of Slab Tamm Plasmon Resonators
    Puhringer, Gerald
    Consani, Cristina
    Jakoby, Bernhard
    SENSORS, 2020, 20 (23) : 1 - 14
  • [2] Optical Neuromorphic modulators based on Tamm Plasmon Resonators with PEDOT:PSS
    Song, Young Min
    Ko, Joo Hwan
    Seo, Dong Hyun
    2024 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS, FLEPS 2024, 2024,
  • [3] Phonon transport in the gigahertz to terahertz range: Confinement, topology, and second sound
    Vasileiadis, Thomas
    Reparaz, Juan Sebastian
    Graczykowski, Bartlomiej
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (18)
  • [4] Tamm plasmon polaritons: Slow and spatially compact light
    Sasin, M. E.
    Seisyan, R. P.
    Kalitteevski, M. A.
    Brand, S.
    Abram, R. A.
    Chamberlain, J. M.
    Egorov, A. Yu.
    Vasil'ev, A. P.
    Mikhrin, V. S.
    Kavokin, A. V.
    APPLIED PHYSICS LETTERS, 2008, 92 (25)
  • [5] Confined Tamm plasmon light-emitting diodes
    Symonds, C.
    Toanen, V.
    Gassenq, A.
    Benoit, J. -m.
    Pereira, A.
    Cleyet-Merle, E.
    Fulcrand, R.
    Bessueille, F.
    Minot, S.
    Morassi, M.
    Lemaitre, A.
    Bellessa, J.
    APPLIED PHYSICS LETTERS, 2023, 122 (26)
  • [6] Generation of Tamm Plasmon Resonances for Light Confinement Applications in Narrowband Gradient-Index Filters Based on Nanoporous Anodic Alumina
    Gomez, Alejandro Rojas
    Acosta, Laura K.
    Ferre-Borrull, Josep
    Santos, Abel
    Marsal, Lluis F.
    ACS APPLIED NANO MATERIALS, 2023, 6 (07) : 5274 - 5283
  • [7] Tamm Plasmon Polaritons for Light Trapping in Organic Solar Cells
    Bikbaev, R. G.
    Vetrov, S. Ya.
    Timofeev, I. V.
    Shabanov, V. F.
    DOKLADY PHYSICS, 2020, 65 (05) : 161 - 163
  • [8] Tamm Plasmon Polaritons for Light Trapping in Organic Solar Cells
    R. G. Bikbaev
    S. Ya. Vetrov
    I. V. Timofeev
    V. F. Shabanov
    Doklady Physics, 2020, 65 : 161 - 163
  • [9] High-Q Tamm plasmon-like resonance in spherical Bragg microcavity resonators
    Garcia-Puente, Yalina
    Auguie, Baptiste
    Kashyap, Raman
    OPTICS EXPRESS, 2024, 32 (06) : 9644 - 9655
  • [10] Light Confinement in Resonators Based on Bloch Surface Waves
    Aurelio, D.
    Perani, T.
    Liscidini, M.
    2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,