Fine-tuning the ozone metric: unmasking errors in measuring wheat yield loss

被引:0
|
作者
Iqbal, Sarah
机构
来源
CURRENT SCIENCE | 2018年 / 114卷 / 10期
关键词
D O I
10.18520/cs/v114/i10/2016-2017
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:2016 / 2017
页数:2
相关论文
共 50 条
  • [21] Assessment of photosynthesis and yield loss of winter wheat under ground-level ozone exposure
    Xu, Jingxin
    Zhao, Hui
    Wang, Sheng
    Zheng, Youfei
    Mai, Boru
    Zhang, Xi
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2023, 29
  • [22] A new model of ozone stress in wheat including grain yield loss and plant acclimation to the pollutant
    Droutsas, I
    Challinor, A. J.
    Arnold, S. R.
    Mikkelsen, T. N.
    Hansen, E. M. O.
    EUROPEAN JOURNAL OF AGRONOMY, 2020, 120
  • [23] Natural variations of wheat EARLY FLOWERING 3 highlight their contributions to local adaptation through fine-tuning of heading time
    Mizuno, Nobuyuki
    Matsunaka, Hitoshi
    Yanaka, Mikiko
    Ishikawa, Goro
    Kobayashi, Fuminori
    Nakamura, Kazuhiro
    THEORETICAL AND APPLIED GENETICS, 2023, 136 (06)
  • [24] Natural variations of wheat EARLY FLOWERING 3 highlight their contributions to local adaptation through fine-tuning of heading time
    Nobuyuki Mizuno
    Hitoshi Matsunaka
    Mikiko Yanaka
    Goro Ishikawa
    Fuminori Kobayashi
    Kazuhiro Nakamura
    Theoretical and Applied Genetics, 2023, 136
  • [25] A stomatal ozone flux-response relationship to assess ozone-induced yield loss of winter wheat in subtropical China
    Feng, Zhaozhong
    Tang, Haoye
    Uddling, Johan
    Pleijel, Hakan
    Kobayashi, Kazuhiko
    Zhu, Jianguo
    Oue, Hiroki
    Guo, Wenshan
    ENVIRONMENTAL POLLUTION, 2012, 164 : 16 - 23
  • [26] Multiple-hypothesis RNN-T Loss for Unsupervised Fine-tuning and Self-training of Neural Transducer
    Do, Cong-Thanh
    Li, Mohan
    Doddipatla, Rama
    INTERSPEECH 2022, 2022, : 4446 - 4450
  • [27] Simple Yet Effective Fine-Tuning of Deep CNNs Using an Auxiliary Classification Loss for Remote Sensing Scene Classification
    Bazi, Yakoub
    Al Rahhal, Mohamad M.
    Alhichri, Haikel
    Alajlan, Naif
    REMOTE SENSING, 2019, 11 (24)
  • [28] Flooding-X: Improving BERT's Resistance to Adversarial Attacks via Loss-Restricted Fine-Tuning
    Liu, Qin
    Zheng, Rui
    Rong, Bao
    Liu, Jingyi
    Liu, ZhiHua
    Cheng, Zhanzhan
    Qiao, Liang
    Gui, Tao
    Zhang, Qi
    Huang, Xuanjing
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 5634 - 5644
  • [29] Evaluation of a semi-supervised self-adjustment fine-tuning procedure for hearing aids for asymmetrical hearing loss
    Goesswein, Jonathan Albert
    Chalupper, Josef
    Kohl, Manuel
    Kinkel, Martin
    Kollmeier, Birger
    Rennies, Jan
    INTERNATIONAL JOURNAL OF AUDIOLOGY, 2024,
  • [30] NoRefER: a Referenceless Quality Metric for Automatic Speech Recognition via Semi-Supervised Language Model Fine-Tuning with Contrastive Learning
    Yuksel, Kamer Ali
    Ferreira, Thiago Castro
    Javadi, Golara
    Al-Badrashiny, Mohamed
    Gunduz, Ahmet
    INTERSPEECH 2023, 2023, : 466 - 470