Rotation and lorentz transformations in 2x2 and 4x4 complex matrices and in polarized-light physics

被引:0
|
作者
November, LJ
机构
[1] National Solar Observatory, Natl. Optimal Astron. Observatories, Sunspot, NM 88349, Sacramento Peak
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0024-3795(96)00515-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hermitian 2 x 2 matrices exhibit basic 3D rotational and 4D Lorentz transformation properties. These matrices arise naturally in representations of the time-averaged pair products or intensities of any two-element wave, giving rise to the light Stokes-parameter transformation properties on the Poincare sphere. Equivalent transformations are obtained for 4 x 4 anticommuting Hermitian Dirac matrices with two types of unitary matrices, corresponding to rotation and Lorentz transformations. Using exponential matrix representations, the 4 x 4 form can be related to the 2 x 2 form. The 4 x 4 representation has physical significance for the subset of intensity-distinguishable two-element standing-wave modes of a cavity, e.g. light standing waves. There is a basic resemblance between (1) the temporal differential equation for two-element standing waves in time, three observable ''Stokes'' parameters, and frequency and (2) the Dirac equation for spin-1/2 free-space particle states in time, three momenta, and particle rest mass. This resemblance is the basis for an optical analog with relativistic quantum mechanics which we describe. (C) Elsevier Science Inc., 1997.
引用
下载
收藏
页码:383 / 408
页数:26
相关论文
共 50 条
  • [21] Elliptic Numerical Ranges of 4x4 Matrices
    Li, Hongkui
    Liu, Xueting
    2009 ETP INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION (FCC 2009), 2009, : 190 - 193
  • [22] THE STRUCTURE AND GEOMETRY OF 4X4 PANDIAGONAL MATRICES
    TURNER, B
    WARNER, K
    DISCRETE MATHEMATICS, 1981, 34 (03) : 301 - 310
  • [23] An invariant of 2x2 matrices
    Cisneros-Molina, JL
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2005, 13 : 146 - 152
  • [24] COMPUTING WITH 2X2 MATRICES
    PROCESI, C
    JOURNAL OF ALGEBRA, 1984, 87 (02) : 342 - 359
  • [25] Improvement of Pilot Symbol Orthogonal Sequences in 2x2 to 4x4 MIMO Wireless Communication Systems with Channel State Estimation
    Romanuke, Vadim
    ELECTRICAL CONTROL AND COMMUNICATION ENGINEERING, 2021, 17 (01) : 26 - 38
  • [26] MORTALITY OF 2X2 MATRICES
    SCHULTZ, P
    AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (06): : 463 - 464
  • [27] CMOS 4x4 and 8x8 Butler Matrices
    Cetinoneri, Berke
    Atesal, Yusuf A.
    Kim, Jeong-Geun
    Rebeiz, Gabriel M.
    2010 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (MTT), 2010, : 69 - 72
  • [28] Real congruences of complex subspaces of 2x2 symmetric complex matrices
    Waterhouse, WC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (2-3) : 502 - 505
  • [29] Numerical Ranges of 4x4 Reducible Companion Matrices
    Li, Hongkui
    Liu, Xueting
    Guan, Enjing
    ACC 2009: ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2009, : 60 - 63
  • [30] A CENTRAL POLYNOMIAL OF LOW DEGREE FOR 4X4 MATRICES
    DRENSKY, V
    CATTANEO, GMP
    JOURNAL OF ALGEBRA, 1994, 168 (02) : 469 - 478