Prediction of Performance Indexes in CNC Milling Using Regression Trees

被引:0
|
作者
Kalidasan, Kannadasan [1 ]
Edla, Damodar Reddy [1 ]
Bablani, Annushree [1 ]
机构
[1] Natl Inst Technol Goa, Dept Comp Sci & Engn, Farmagudi, India
关键词
Regression tree; Prediction; CNC milling; Surface roughness; Geometric tolerances;
D O I
10.1007/978-3-030-34869-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine Learning (ML) is a major application of artificial intelligence which has its importance in all fields of engineering. ML models learn automatically from the dataset and makes intelligent decisions and predictions. Computer Numerical Control (CNC) plays a vital role in manufacturing parts. Each parts manufactured need desired performance index values depend on its usage. Surface roughness, geometric tolerances are major performance index values. The deviations of the performance index values arises because of controllable and uncontrollable parameters. To adjust the parameters, there is a need to find relation between controlled parameters and their performance index values. Thus, we are motivated to design a Machine Learning model for the problem. In this work, we have proposed a regression tree based model which predicts the performance index values by taking the CNC machining parameters as the input. The regression tree built can be useful for the manufacturers for achieving the desired performance index values.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [31] Prediction intervals for global solar irradiation forecasting using regression trees methods
    Voyant, Cyril
    Motte, Fabrice
    Notton, Gilles
    Fouilloy, Alexis
    Nivet, Marie-Laure
    Duchaud, Jean-Laurent
    RENEWABLE ENERGY, 2018, 126 : 332 - 340
  • [32] PREDICTION OF CANNABIS AND COCAINE USE IN ADOLESCENCE USING DECISION TREES AND LOGISTIC REGRESSION
    Gervilla, Elena
    Palmer, Alfonso
    EUROPEAN JOURNAL OF PSYCHOLOGY APPLIED TO LEGAL CONTEXT, 2010, 2 (01): : 19 - 35
  • [33] Prediction of Survival to Discharge Following Cardiopulmonary Resuscitation Using Classification and Regression Trees
    Ebell, Mark H.
    Afonso, Anna M.
    Geocadin, Romergryko G.
    CRITICAL CARE MEDICINE, 2013, 41 (12) : 2688 - 2697
  • [34] Prediction of Educationist's Performance using Regression Model
    Arora, Sapna
    Agarwal, Manisha
    Kawatra, Ruchi
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM-2020), 2019, : 88 - 93
  • [35] Cyclone Performance Prediction Using Linear Regression Techniques
    Corral Bobadilla, Marina
    Fernandez Martinez, Roberto
    Lostado Lorza, Ruben
    Somovilla Gomez, Fatima
    Vergara Gonzalez, Eliseo P.
    INTERNATIONAL JOINT CONFERENCE SOCO'16- CISIS'16-ICEUTE'16, 2017, 527 : 53 - 62
  • [36] Short-Term Traffic Volume Prediction Using Classification and Regression Trees
    Xu, Yanyan
    Kong, Qing-Jie
    Liu, Yuncai
    2013 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2013, : 493 - 498
  • [37] Regression trees for fast and adaptive prediction intervals
    Cabezas, Luben M. C.
    Otto, Mateus P.
    Izbicki, Rafael
    Stern, Rafael B.
    INFORMATION SCIENCES, 2025, 686
  • [38] PREDICTION OF RICE MILLING YIELD AND QUALITY ATTRIBUTES DURING STORAGE USING REGRESSION ANALYSES
    Shafiekhani, S.
    Lee, J. A.
    Atungulu, G. G.
    TRANSACTIONS OF THE ASABE, 2019, 62 (05) : 1259 - 1268
  • [39] Prediction of tool wear using regression and ANN models in end-milling operation
    P. Palanisamy
    I. Rajendran
    S. Shanmugasundaram
    The International Journal of Advanced Manufacturing Technology, 2008, 37 : 29 - 41
  • [40] Prediction of tool wear using regression and ANN models in end-milling operation
    Palanisamy, P.
    Rajendran, I.
    Shanmugasundaram, S.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2008, 37 (1-2): : 29 - 41