Prediction of Performance Indexes in CNC Milling Using Regression Trees

被引:0
|
作者
Kalidasan, Kannadasan [1 ]
Edla, Damodar Reddy [1 ]
Bablani, Annushree [1 ]
机构
[1] Natl Inst Technol Goa, Dept Comp Sci & Engn, Farmagudi, India
关键词
Regression tree; Prediction; CNC milling; Surface roughness; Geometric tolerances;
D O I
10.1007/978-3-030-34869-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine Learning (ML) is a major application of artificial intelligence which has its importance in all fields of engineering. ML models learn automatically from the dataset and makes intelligent decisions and predictions. Computer Numerical Control (CNC) plays a vital role in manufacturing parts. Each parts manufactured need desired performance index values depend on its usage. Surface roughness, geometric tolerances are major performance index values. The deviations of the performance index values arises because of controllable and uncontrollable parameters. To adjust the parameters, there is a need to find relation between controlled parameters and their performance index values. Thus, we are motivated to design a Machine Learning model for the problem. In this work, we have proposed a regression tree based model which predicts the performance index values by taking the CNC machining parameters as the input. The regression tree built can be useful for the manufacturers for achieving the desired performance index values.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [1] Concrete performance prediction using boosting smooth transition regression trees (BooST)
    Anyaoha, Uchenna
    Peng, Xiang
    Liu, Zheng
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, CIVIL INFRASTRUCTURE, AND TRANSPORTATION XIII, 2019, 10971
  • [2] Prediction of ordinal classes using regression trees
    Kramer, S
    Pfahringer, B
    Widmer, G
    De Groeve, M
    FUNDAMENTA INFORMATICAE, 2001, 47 (1-2) : 1 - 13
  • [3] Interpretable regression trees using conformal prediction
    Johansson, Ulf
    Linusson, Henrik
    Lofstrom, Tuve
    Bostromc, Henrik
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 97 : 394 - 404
  • [4] PREDICTION OF RESPONSES IN A CNC MILLING OPERATION USING RANDOM FOREST REGRESSOR
    Bhattacharya, Shibaprasad
    Chakraborty, Shankar
    FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2023, 21 (04) : 685 - 700
  • [5] Milling force prediction using regression and neural networks
    T. Radhakrishnan
    Uday Nandan
    Journal of Intelligent Manufacturing, 2005, 16 : 93 - 102
  • [6] Milling force prediction using regression and neural networks
    Radhakrishnan, T
    Nandan, U
    JOURNAL OF INTELLIGENT MANUFACTURING, 2005, 16 (01) : 93 - 102
  • [7] Stability Prediction in CNC Pocket Milling Processes
    Lyu S.
    Li H.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2019, 30 (18): : 2236 - 2241
  • [8] Prediction of urban propagation loss using regression trees
    Gerome, D
    1997 IEEE 47TH VEHICULAR TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-3: TECHNOLOGY IN MOTION, 1997, : 1099 - 1102
  • [9] Surface Roughness Prediction for CNC Milling Process using Artificial Neural Network
    Rashid, M. F. F. Ab.
    Lani, M. R. Abdul
    WORLD CONGRESS ON ENGINEERING, WCE 2010, VOL III, 2010, : 2219 - 2224
  • [10] CNC Milling Tool Head Imbalance Prediction Using Computational Intelligence Methods
    Zabinski, Tomasz
    Maczka, Tomasz
    Kluska, Jacek
    Kusy, Maciej
    Gierlak, Piotr
    Hanus, Robert
    Prucnal, Slawomir
    Sep, Jaroslaw
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2015, 9119 : 503 - 514