An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions

被引:132
|
作者
Sun, Peng-Nan [1 ,5 ]
Le Touze, David [2 ,3 ]
Oger, Guillaume [2 ,3 ]
Zhang, A-Man [4 ]
机构
[1] Sun Yat Sen Univ, Sch Marine Engn & Technol, Zhuhai 519082, Peoples R China
[2] Ecole Cent Nantes, LHEEA Lab ECN, F-44300 Nantes, France
[3] CNRS, F-44300 Nantes, France
[4] Harbin Engn Univ, Coll Shipbldg Engn, Harbin 150001, Peoples R China
[5] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Smoothed particle hydrodynamics; delta plus -SPH; FSI-SPH; Fluid-structure interaction; Tensile instability; Viscous flow;
D O I
10.1016/j.oceaneng.2020.108552
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The recently developed FSI-SPH model (Sun et al., 2019c), by combining the multi-resolution delta(+)-SPH scheme and a Total Lagrangian SPH method, is further extended for more complex three-dimensional (3D) Fluid Structure Interaction (FSI) problems. The FSI-SPH model is strengthened with advanced numerical techniques, in which a combination of the Particle Shifting Technique (PST) and the Tensile Instability Control (TIC) is adopted to prevent flow voids induced by the tensile instability. The Adaptive Particle Refinement (APR) is used to refine particles in the boundary layer region and coarsen particles in the far-field to increase local accuracy but reduce overall computational cost. Moreover, the delta(+)-SPH and Total Lagrangian SPH solvers are coupled through a Modified Sequential Staggered (MSS) algorithm which, on one hand, ensures the numerical accuracy and stability and, on the other hand, improves the efficiency when magnitudes of time steps between the two solvers differ from each other significantly. In the numerical results, challenging 2D and 3D FSI cases are simulated to test the accuracy of the proposed FSI-SPH model. A new FSI benchmark with free-surface is proposed to highlight the advantage of this FSI-SPH model in simulating free-surface viscous flows. In addition, 3D effects in the FSI dam-breaking and sloshing cases are investigated.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Smoothed-Interface SPH Model for Multiphase Fluid-Structure Interaction
    Guo, Chaoyang
    Zhang, Huashan
    Qian, Zhihao
    Liu, Moubin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 518
  • [42] A monolithic strategy for fluid-structure interaction problems
    Jog, C. S.
    Pal, R. K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 85 (04) : 429 - 460
  • [43] On Numerical Approximation of Fluid-Structure Interaction Problems
    Svacek, P.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 571 - 578
  • [44] DECOUPLING PROCEDURES FOR FLUID-STRUCTURE INTERACTION PROBLEMS
    ANTONIADIS, I
    KANARACHOS, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 70 (01) : 1 - 25
  • [45] Model Studies of Fluid-Structure Interaction Problems
    Wang, X. Sheldon
    Yang, Ye
    Wu, Tao
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 119 (01): : 5 - 34
  • [46] MATHEMATICAL FORMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS
    BOUJOT, J
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1987, 21 (02): : 239 - 260
  • [47] An Eulerian approach for fluid-structure interaction problems
    Morinishi, Koji
    Fukui, Tomohiro
    COMPUTERS & FLUIDS, 2012, 65 : 92 - 98
  • [48] A parametric study on fluid-structure interaction problems
    Maity, D
    Bhattacharyya, SK
    JOURNAL OF SOUND AND VIBRATION, 2003, 263 (04) : 917 - 935
  • [49] Preface: Simulation of Fluid-Structure Interaction Problems
    Li, Zhilin
    Wang, X. Sheldon
    Zhang, Lucy T.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 119 (01): : 1 - 3
  • [50] ALE formulation for fluid-structure interaction problems
    Souli, M
    Ouahsine, A
    Lewin, L
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (5-7) : 659 - 675