In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds

被引:132
|
作者
Poh, Patrina S. P. [1 ,2 ]
Hutmacher, Dietmar W. [1 ,3 ]
Holzapfel, Boris M. [1 ,4 ]
Solanki, Anu K. [5 ,6 ]
Stevens, Molly M. [5 ,6 ]
Woodruff, Maria A. [1 ]
机构
[1] Queensland Univ Technol, Inst Hlth & Biomed Innovat, 60 Musk Ave, Brisbane, Qld 4059, Australia
[2] Tech Univ Munich, Klinikum Rechts Isar, Dept Expt Trauma Surg, Ismaninger 22, D-81675 Munich, Germany
[3] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Munich, Germany
[4] Univ Wurzburg, Dept Orthopaed Surg, Koenig Ludwig Haus,Brettreichstr 11, D-97074 Wurzburg, Germany
[5] Univ London Imperial Coll Sci Technol & Med, Inst Biomed Engn, Dept Mat, London SW7 2AZ, England
[6] Univ London Imperial Coll Sci Technol & Med, Inst Biomed Engn, Dept Bioengn, London SW7 2AZ, England
基金
澳大利亚研究理事会;
关键词
Polycaprolactone; Bioactive glass; Strontium; 45S5; Bioglass; Bone tissue engineering; BIOACTIVE GLASS; MECHANICAL-PROPERTIES; CELL-GROWTH; STEM-CELLS; STRONTIUM; DEGRADATION; CULTURE; DIFFERENTIATION; BIOREACTORS; EXPRESSION;
D O I
10.1016/j.actbio.2015.11.012
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study, polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 Bioglass (R) (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using an additive manufacturing technique for bone tissue engineering purposes. The PCL scaffolds were surface coated with calcium phosphate (CaP) to enable further comparison of the osteoinductive potential of different scaffolds: PCL (control), PCL/CaP-coated, PCL/50-45S5 and PCL/50-SrBG scaffolds. The PCL/50-45S5 and PCL/50-SrBG composite scaffolds were reproducibly manufactured with a morphology highly resembling that of PCL only scaffolds. However, 50 wt% loading of the bioactive glass (BG) particles into the PCL bulk decreased the scaffold's compressive Young's modulus. Coating of PCL scaffolds with CaP had a negligible effect on the scaffold's porosity and compressive Young's modulus. When immersed in culture media, BG dissolution ions (Si and Sr) were detected for up to 10 weeks in the immersion media and surface precipitates were formed on both PCL/50-45S5 and PCL/50-SrBG scaffolds' surfaces, indicating good in vitro bioactivity. In vitro cell studies were conducted using sheep bone marrow stromal cells (BMSCs) under non-osteogenic or osteogenic conditioned media, and under static or dynamic culture environments. All scaffolds were able to support cell adhesion, growth and proliferation. However, when cultured in non-osteogenic media, only PCL/CaP, PCL/50-45S5 and PCL/50-SrBG scaffolds showed an up-regulation of osteogenic gene expression. Additionally, under a dynamic culture environment, the rate of cell growth, proliferation and osteoblast-related gene expression was enhanced across all scaffold groups. Subsequently, PCL/CaP, PCL/50-45S5 and PCL/50-SrBG scaffolds, with or without seeded cells, were implanted subcutaneously into nude rats for the evaluation of osteoinductivity potential. After 8 and 16 weeks, host tissue infiltrated well into the scaffolds, but no mature bone formation was observed in any scaffolds groups. Statement of significance This novelty of this research work is that it provide a comprehensive comparison, both in vitro and in vivo, between 3 different composite materials widely used in the field of bone tissue engineering for their bone regeneration capabilities. The materials used in this study include polycaprolactone, 45S5 Bioglass, strontium-substituted bioactive glass and calcium phosphate. Additionally, the composite materials were fabricated into the form of 3D scaffolds using additive manufacturing technique, a widely used technique in tissue engineering. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:319 / 333
页数:15
相关论文
共 50 条
  • [41] CALCIUM-PHOSPHATE FORMATION AT THE SURFACE OF BIOACTIVE GLASS INVIVO
    ANDERSSON, OH
    KARLSSON, KH
    KANGASNIEMI, K
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1990, 119 (03) : 290 - 296
  • [42] Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis
    Tarafder, Solaiman
    Bose, Susmita
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (13) : 9955 - 9965
  • [43] Cuttlefish Bone-Derived Biphasic Calcium Phosphate Scaffolds Coated with Sol-Gel Derived Bioactive Glass
    Neto, Ana S.
    Brazete, Daniela
    Ferreira, Jose M. F.
    MATERIALS, 2019, 12 (17)
  • [44] Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites
    Mohammadi, M. Shah
    Ahmed, I.
    Muja, N.
    Almeida, S.
    Rudd, C. D.
    Bureau, M. N.
    Nazhat, S. N.
    ACTA BIOMATERIALIA, 2012, 8 (04) : 1616 - 1626
  • [45] Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds
    Vallejos Baier, Raul
    Contreras Raggio, Jose, I
    Millan Giovanetti, Carola
    Palza, Humberto
    Burda, Iurii
    Terrasi, Giovanni
    Weisse, Bernhard
    Siqueira De Freitas, Gilberto
    Nystroem, Gustav
    Vivanco, Juan F.
    Aiyangar, Ameet K.
    BIOMATERIALS ADVANCES, 2022, 134
  • [46] Enhancing bone tissue engineering with 3D-Printed polycaprolactone scaffolds integrated with tragacanth gum/bioactive glass
    Janmohammadi, Mahsa
    Nourbakhsh, Mohammad Sadegh
    Bahraminasab, Marjan
    Tayebi, Lobat
    MATERIALS TODAY BIO, 2023, 23
  • [47] Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo
    Qi, Xin
    Pei, Peng
    Zhu, Min
    Du, Xiaoyu
    Xin, Chen
    Zhao, Shichang
    Li, Xiaolin
    Zhu, Yufang
    SCIENTIFIC REPORTS, 2017, 7
  • [48] Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo
    Xin Qi
    Peng Pei
    Min Zhu
    Xiaoyu Du
    Chen Xin
    Shichang Zhao
    Xiaolin Li
    Yufang Zhu
    Scientific Reports, 7
  • [50] Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration
    Gao, Chunxia
    Gao, Qiang
    Li, Yadong
    Rahaman, Mohamed N.
    Teramoto, Akira
    Abe, Koji
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (05) : 1324 - 1334