Restoration of Missing Pressures in a Gas Well Using Recurrent Neural Networks with Long Short-Term Memory Cells

被引:5
|
作者
Ki, Seil [1 ]
Jang, Ilsik [2 ]
Cha, Booho [3 ]
Seo, Jeonggyu [1 ]
Kwon, Oukwang [1 ]
机构
[1] Korean Natl Oil Corp, E&P Tech Ctr, Ulsan 44538, South Korea
[2] Chosun Univ, Dept Energy & Resources Engn, Gwangju 61452, South Korea
[3] Korean Natl Oil Corp, E&P Domest Business Unit, Ulsan 44538, South Korea
关键词
RNN; LSTM; recurrent neural network; long short-term memory; missing pressure data; restoration; PLACEMENT; OPTIMIZATION; TIME;
D O I
10.3390/en13184696
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study proposes a data-driven method based on recurrent neural networks (RNNs) with long short-term memory (LSTM) cells for restoring missing pressure data from a gas production well. Pressure data recorded by gauges installed at the bottom hole and wellhead of a production well often contain abnormal or missing values as a result of gauge malfunctions, noise, outliers, and operational instability. RNNs employing LSTM cells to prevent long-term memory loss have been widely used to predict time series data. In this study, an RNN with the LSTM method was used to restore abnormal or missing wellhead and bottom-hole pressures in three intervals within a production sequence of more than eight years in duration. The pressure restoration was performed using various input features for RNNs with LSTM models based on the characteristics of the available data. It was carried out through three sequential processes and the results were acceptable with a mean absolute percentage error no more than 5.18%. The reliability of the proposed method was verified through a comparison with the results of a physical model.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] BIDIRECTIONAL QUATERNION LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORKS FOR SPEECH RECOGNITION
    Parcollet, Titouan
    Morchid, Mohamed
    Linares, Georges
    De Mori, Renato
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8519 - 8523
  • [32] Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Networks
    Bontemps, Loic
    Van Loi Cao
    McDermott, James
    Nhien-An Le-Khac
    FUTURE DATA AND SECURITY ENGINEERING, FDSE 2016, 2016, 10018 : 141 - 152
  • [33] Long Short-term Memory based on a Reward/punishment Strategy for Recurrent Neural Networks
    Liu, Jiangjiang
    Luo, Biao
    Yan, Pengfei
    Wang, Ding
    Liu, Derong
    2017 32ND YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2017, : 327 - 332
  • [34] Action Classification in Soccer Videos with Long Short-Term Memory Recurrent Neural Networks
    Baccouche, Moez
    Mamalet, Franck
    Wolf, Christian
    Garcia, Christophe
    Baskurt, Atilla
    ARTIFICIAL NEURAL NETWORKS-ICANN 2010, PT II, 2010, 6353 : 154 - +
  • [35] FPGA-based Accelerator for Long Short-Term Memory Recurrent Neural Networks
    Guan, Yijin
    Yuan, Zhihang
    Sun, Guangyu
    Cong, Jason
    2017 22ND ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2017, : 629 - 634
  • [36] An analysis of Convolutional Long Short-Term Memory Recurrent Neural Networks for gesture recognition
    Tsironi, Eleni
    Barros, Pablo
    Weber, Cornelius
    Wermter, Stefan
    NEUROCOMPUTING, 2017, 268 : 76 - 86
  • [37] Sequence Discriminative Distributed Training of Long Short-Term Memory Recurrent Neural Networks
    Sak, Hasim
    Vinyals, Oriol
    Heigold, Georg
    Senior, Andrew
    McDermott, Erik
    Monga, Rajat
    Mao, Mark
    15TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2014), VOLS 1-4, 2014, : 1209 - 1213
  • [38] A System for Learning Atoms Based on Long Short-Term Memory Recurrent Neural Networks
    Quan, Zhe
    Lin, Xuan
    Wang, Zhi-Jie
    Liu, Yan
    Wang, Fan
    Li, Kenli
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 728 - 733
  • [39] Handwriting Recognition with Large Multidimensional Long Short-Term Memory Recurrent Neural Networks
    Voigtlaender, Paul
    Doetsch, Patrick
    Ney, Hermann
    PROCEEDINGS OF 2016 15TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2016, : 228 - 233
  • [40] WELL INTEGRITY OPERATIONS EXPERIENCE TRANSFER USING LONG SHORT-TERM MEMORY (LSTM) RECURRENT NEURAL NETWORK
    Semwogerere, David
    Pavlov, Alexey
    Sangesland, Sigbjorn
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 9, 2023,