Insights into the structure and thermal stability of uranyl aluminate nanoparticles

被引:1
|
作者
Chave, Tony [1 ]
Le Goff, Xavier [1 ]
Scheinost, Andreas C. [2 ]
Nikitenko, Sergey I. [1 ]
机构
[1] UMR 5257 CEA CNRS UM ENSCM, ICSM, Ctr Marcoule, BP 17171, F-30207 Bagnols Sur Ceze, France
[2] Helmholtz Zentrum Dresden Rossendorf, Inst Resource Ecol, D-01314 Dresden, Germany
关键词
EXAFS SPECTROSCOPY; URANIUM; TEMPERATURE; DIFFRACTION; SPECIATION; PEROXIDE; CLUSTERS; OXIDE;
D O I
10.1039/c6nj02948e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ultrasonically assisted hydrolytic precipitation of U(VI) in the presence of mesoporous alumina followed by thermal treatment of a solid precursor enabled the formation of crystallized uranyl aluminate (URAL) nanoparticles (NPs) dispersed in the alumina matrix. The effect of U(VI) concentration and calcination temperature on the yield of URAL NPs was studied using XRD, XAFS and HRTEM techniques. At 800 degrees C, URAL NPs (d approximate to 5 nm) are formed only for a low uranium loading of about 5 wt% whereas for a higher content of uranium, larger U3O8 NPs (d approximate to 20 nm) were identified as the principal uranium species. At 500 degrees C, URAL NPs are formed even for 25 wt% of uranium. The U L-III edge EXAFS spectra pointed out that uranyl cations in URAL are coordinated by bidentate aluminate groups. Presumably URAL is formed during the heating of the 2UO(3).NH3.2H(2)O/AlO(OH) precursor. However, high temperature and higher content of uranium promote transformation of URAL to more thermodynamically stable U3O8. This process is accompanied by the growth of uranium NPs via the Ostwald ripening mechanism.
引用
收藏
页码:1160 / 1167
页数:8
相关论文
共 50 条
  • [21] Effect of composition on the thermal stability of sputter deposited hafnium aluminate and nitrided hafnium aluminate dielectrics on Si (100)
    Sivasubramani, P.
    Kim, J.
    Kim, M. J.
    Gnade, B. E.
    Wallace, R. M.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (11)
  • [22] Thermal Conductivity of Calcium Aluminate and Complex Vanadates of Garnet Structure
    Tolkacheva, A. S.
    Popov, P. A.
    Shkerin, S. N.
    Naumov, S. V.
    Khavlyuk, P. D.
    Krugovykh, A. A.
    Telegin, S. V.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2020, 93 (03) : 325 - 332
  • [23] Thermal Conductivity of Calcium Aluminate and Complex Vanadates of Garnet Structure
    A. S. Tolkacheva
    P. A. Popov
    S. N. Shkerin
    S. V. Naumov
    P. D. Khavlyuk
    A. A. Krugovykh
    S. V. Telegin
    Russian Journal of Applied Chemistry, 2020, 93 : 325 - 332
  • [24] Structure, Morphology and Thermal Stability of Porous Carbon Nanofibers Loaded with Cobalt Nanoparticles
    Gao, Dawei
    Qiao, Hui
    Wang, Qingqing
    Cai, Yibing
    Wei, Qufu
    JOURNAL OF ENGINEERED FIBERS AND FABRICS, 2011, 6 (04): : 6 - 9
  • [25] Structure, Stability, and Acidity of the Uranyl Arsenate Dimer in Aqueous Solution
    He, Mengjia
    Liu, Xiandong
    Lu, Xiancai
    Zhang, Yingchun
    Wang, Rucheng
    INORGANIC CHEMISTRY, 2023, 62 (22) : 8729 - 8738
  • [26] On the structure and relative stability of uranyl(VI) sulfate complexes in solution
    Vallet, Valrie
    Grenthe, Ingmar
    COMPTES RENDUS CHIMIE, 2007, 10 (10-11) : 905 - 915
  • [27] Synthesis, identification, structural and thermal stability investigations on bipyridinium uranyl acetate
    Aleksovska, S
    Donova, I
    Stefov, V
    THERMOCHIMICA ACTA, 2002, 389 (1-2) : 71 - 77
  • [28] Structural Insights into the Binding of Uranyl with Human Serum Protein Apotransferrin Structure and Spectra of Protein-Uranyl Interactions
    Benavides-Garcia, Maria G.
    Balasubramanian, Krishnan
    CHEMICAL RESEARCH IN TOXICOLOGY, 2009, 22 (09) : 1613 - 1621
  • [29] Structure and stability of germanium nanoparticles
    Pizzagalli, L
    Galli, G
    Klepeis, JE
    Gygi, F
    PHYSICAL REVIEW B, 2001, 63 (16):
  • [30] Theoretical investigation of structure and stability of Reidinger defects in barium magnesium aluminate
    Mishra, KC
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (06) : H84 - H93