Insights into the structure and thermal stability of uranyl aluminate nanoparticles

被引:1
|
作者
Chave, Tony [1 ]
Le Goff, Xavier [1 ]
Scheinost, Andreas C. [2 ]
Nikitenko, Sergey I. [1 ]
机构
[1] UMR 5257 CEA CNRS UM ENSCM, ICSM, Ctr Marcoule, BP 17171, F-30207 Bagnols Sur Ceze, France
[2] Helmholtz Zentrum Dresden Rossendorf, Inst Resource Ecol, D-01314 Dresden, Germany
关键词
EXAFS SPECTROSCOPY; URANIUM; TEMPERATURE; DIFFRACTION; SPECIATION; PEROXIDE; CLUSTERS; OXIDE;
D O I
10.1039/c6nj02948e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ultrasonically assisted hydrolytic precipitation of U(VI) in the presence of mesoporous alumina followed by thermal treatment of a solid precursor enabled the formation of crystallized uranyl aluminate (URAL) nanoparticles (NPs) dispersed in the alumina matrix. The effect of U(VI) concentration and calcination temperature on the yield of URAL NPs was studied using XRD, XAFS and HRTEM techniques. At 800 degrees C, URAL NPs (d approximate to 5 nm) are formed only for a low uranium loading of about 5 wt% whereas for a higher content of uranium, larger U3O8 NPs (d approximate to 20 nm) were identified as the principal uranium species. At 500 degrees C, URAL NPs are formed even for 25 wt% of uranium. The U L-III edge EXAFS spectra pointed out that uranyl cations in URAL are coordinated by bidentate aluminate groups. Presumably URAL is formed during the heating of the 2UO(3).NH3.2H(2)O/AlO(OH) precursor. However, high temperature and higher content of uranium promote transformation of URAL to more thermodynamically stable U3O8. This process is accompanied by the growth of uranium NPs via the Ostwald ripening mechanism.
引用
收藏
页码:1160 / 1167
页数:8
相关论文
共 50 条
  • [1] First Synthesis of Uranyl Aluminate Nanoparticles
    Chave, Tony
    Nikitenko, Sergey I.
    Scheinost, Andreas C.
    Berthon, Claude
    Arab-Chapelet, Benedicte
    Moisy, Philippe
    INORGANIC CHEMISTRY, 2010, 49 (14) : 6381 - 6383
  • [2] Thermal and catalytic stability of magnesium aluminate spinel supported Pt nanoparticles
    Li, Weizhen
    Kovarik, Libor
    Mei, Donghai
    Liu, Jun
    Wang, Yong
    Peden, Charles H. F.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [3] THERMAL-STABILITY OF LITHIUM ALUMINATE
    FINN, PA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (08) : C360 - C360
  • [4] Structure and thermal stability of AgCu chiral nanoparticles
    Bochicchio, D.
    Ferrando, R.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (05):
  • [5] Structure and thermal stability of AgCu chiral nanoparticles
    D. Bochicchio
    R. Ferrando
    The European Physical Journal D, 2012, 66
  • [6] THERMAL-STABILITY OF URANYL SULFATE
    DUBROVIN, AV
    DUNAEVA, KM
    IPPOLITO.EA
    KOVALCHU.VY
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 2 KHIMIYA, 1972, (05): : 603 - &
  • [7] Stability and electronic structure of aluminate nanotubes
    Kang, Yong-Ju
    Hong, Hyun-Min
    Moon, C. -Y.
    Chang, K. J.
    Kim, Hae Jin
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (06) : 1351 - 1354
  • [8] THERMAL-STABILITY OF URANYL CHLORIDE AMINATES
    KOBETS, LV
    KHODKO, NN
    UMREIKO, DS
    ZHURNAL NEORGANICHESKOI KHIMII, 1977, 22 (09): : 2503 - 2507
  • [9] Hydrothermal synthesis, structure and thermal stability of diamine templated layered uranyl-vanadates
    Rivenet, Murielle
    Vigier, Nicolas
    Roussel, Pascal
    Abraham, Francis
    JOURNAL OF SOLID STATE CHEMISTRY, 2007, 180 (02) : 713 - 724
  • [10] Thermal Stability and Products of Decomposition of Hydroxylaminate Uranyl Complexes
    Beirakhov, A. G.
    Rotov, A., V
    Efimov, N. N.
    Il'in, E. G.
    Gekhman, A. E.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2019, 64 (02) : 185 - 189