Transition from quasiperiodicity to chaos for three coaxial vortex rings

被引:0
|
作者
Blackmore, D [1 ]
Knio, O
机构
[1] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Ctr Appl Math & Stat, Newark, NJ 07102 USA
[3] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamics of three coaxial vortex rings of strengths Gamma(1), Gamma(2) and Gamma(3) in an ideal fluid is investigated. It is proved that if Gamma(j), Gamma(j) + Gamma(k) and Gamma(1) + Gamma(2) + Gamma(3) are not zero for all j, k = 1, 2, 3, then KAM and Poincare-Birkhoff theory can be used to prove that if the distances among the rings are sufficiently small compared to the mean radius of the rings, there are many initial configurations of the rings that produce quasiperiodic or periodic motions. Moreover, it is shown that the motion become chaotic as the inter-ring distances are increased relative to the mean radius.
引用
收藏
页码:S173 / S176
页数:4
相关论文
共 50 条
  • [21] COAXIAL INTERACTIONS OF 2 VORTEX RINGS OR OF A RING WITH A BODY
    YE, QY
    CHU, CK
    HE, YS
    ACTA MECHANICA SINICA, 1995, 11 (03) : 219 - 228
  • [22] Coaxial axisymmetric vortex rings: 150 years after Helmholtz
    Meleshko, Viatcheslav V.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2010, 24 (1-4) : 403 - 431
  • [23] Coaxial axisymmetric vortex rings: 150 years after Helmholtz
    Viatcheslav V. Meleshko
    Theoretical and Computational Fluid Dynamics, 2010, 24 : 403 - 431
  • [24] Interaction dynamics of two coaxial vortex rings in natural convection
    Andrushchenko, V.A.
    Meshcheryakov, M.V.
    Izvestiya Akademii Nauk. Mekhanika Zhidkosti I Gaza, 1991, (04): : 169 - 171
  • [25] Sound generation by the leapfrogging between two coaxial vortex rings
    Inoue, O
    PHYSICS OF FLUIDS, 2002, 14 (09) : 3361 - 3364
  • [26] Sound generation by the pairing of two coaxial unequal vortex rings
    Tang, SK
    Ko, NWM
    ACUSTICA, 1996, 82 : S171 - S171
  • [27] Spatiotemporal quasiperiodicity transition to chaos in the one-way coupled bistability lattice system
    Yang, SP
    Tian, G
    Qu, JL
    Xu, SS
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (02): : 213 - 219
  • [28] Spatiotemporal quasiperiodicity transition to chaos in the one-way coupled bistability lattice system
    杨世平
    田钢
    屈进禄
    徐树山
    Science China Mathematics, 1999, (02) : 213 - 219
  • [29] Spatiotemporal quasiperiodicity transition to chaos in the one-way coupled bistability lattice system
    Shiping Yang
    Gang Tian
    Jinlu Qu
    Shushan Xu
    Science in China Series A: Mathematics, 1999, 42 : 213 - 219
  • [30] Topological transition from superfluid vortex rings to isolated knots and links
    Bai, Wen-Kai
    Yang, Tao
    Liu, Wu-Ming
    PHYSICAL REVIEW A, 2020, 102 (06)