Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online

被引:182
|
作者
Forsberg, Erica M. [1 ,2 ]
Huan, Tao [1 ]
Rinehart, Duane [1 ]
Benton, H. Paul [1 ]
Warth, Benedikt [1 ,3 ]
Hilmers, Brian [1 ]
Siuzdak, Gary [1 ]
机构
[1] Scripps Res Inst, Ctr Metabol & Mass Spectrometry, La Jolla, CA 92037 USA
[2] San Diego State Univ, Dept Chem & Biochem, San Diego, CA 92182 USA
[3] Univ Vienna, Dept Food Chem & Toxicol, Vienna, Austria
基金
美国国家卫生研究院;
关键词
SPECTROMETRY-BASED METABOLOMICS; MASS; LIQUID; IDENTIFICATION; INTEGRATION; COLON; TOOL; GENERATION; PROTEOME; METLIN;
D O I
10.1038/nprot.2017.151
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Systems biology is the study of complex living organisms, and as such, analysis on a systems-wide scale involves the collection of information-dense data sets that are representative of an entire phenotype. To uncover dynamic biological mechanisms, bioinformatics tools have become essential to facilitating data interpretation in large-scale analyses. Global metabolomics is one such method for performing systems biology, as metabolites represent the downstream functional products of ongoing biological processes. We have developed XCMS Online, a platform that enables online metabolomics data processing and interpretation. A systems biology workflow recently implemented within XCMS Online enables rapid metabolic pathway mapping using raw metabolomics data for investigating dysregulated metabolic processes. In addition, this platform supports integration of multi-omic (such as genomic and proteomic) data to garner further systems-wide mechanistic insight. Here, we provide an in-depth procedure showing how to effectively navigate and use the systems biology workflow within XCMS Online without a priori knowledge of the platform, including uploading liquid chromatography (LC)-mass spectrometry (MS) data from metabolite-extracted biological samples, defining the job parameters to identify features, correcting for retention time deviations, conducting statistical analysis of features between sample classes and performing predictive metabolic pathway analysis. Additional multi-omics data can be uploaded and overlaid with previously identified pathways to enhance systems-wide analysis of the observed dysregulations. We also describe unique visualization tools to assist in elucidation of statistically significant dysregulated metabolic pathways. Parameter input takes 5-10 min, depending on user experience; data processing typically takes 1-3 h, and data analysis takes similar to 30 min.
引用
收藏
页码:633 / 651
页数:19
相关论文
共 50 条
  • [41] Using multi-omic network analysis to identify cancer-relevant signaling pathways and novel biomarkers
    Clark, Natalie M.
    Giillette, Michael A.
    Satpathy, Shankha
    Carr, Steven A.
    Mani, D. R.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2022, 21 (08) : S38 - S38
  • [42] Investigating Deep Learning Based Breast Cancer Subtyping Using Pan-Cancer and Multi-Omic Data
    Cristovao, Francisco
    Cascianelli, Silvia
    Canakoglu, Arif
    Carman, Mark
    Nanni, Luca
    Pinoli, Pietro
    Masseroli, Marco
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 121 - 134
  • [43] Prognostic and biological function value of OSBPL3 in colorectal cancer analyzed by multi-omic data analysis
    Chengxing Wang
    Yaoming He
    Yu He
    Weijun Liang
    Chaorong Zhou
    Meimei Wu
    Zijie Meng
    Wanglin Li
    Jie Cao
    [J]. BMC Gastroenterology, 23
  • [44] IDENTIFYING MOLECULAR FEATURES CONTRIBUTING TO DISEASE HETEROGENEITY IN CROHN'S DISEASE USING MULTI-OMIC DATA INTEGRATION
    Sudhakar, Padhmanand
    Verstockt, Bram
    Creyns, Brecht
    Cremer, Jonathan
    Van Assche, Gert A.
    Korcsmaros, Tamas
    Ferrante, Marc
    Vermeire, Severine
    [J]. GASTROENTEROLOGY, 2019, 156 (06) : S1117 - S1117
  • [45] Using a multi-omic approach to investigate the mechanism of 12-bis-THA activity against Burkholderia thailandensis
    Pattinson, Adam
    Bahia, Sandeep
    Le Gall, Gwenaelle
    Morris, Christopher J.
    Harding, Sarah V.
    McArthur, Michael
    [J]. FRONTIERS IN MICROBIOLOGY, 2023, 13
  • [46] Prognostic and biological function value of OSBPL3 in colorectal cancer analyzed by multi-omic data analysis
    Wang, Chengxing
    He, Yaoming
    He, Yu
    Liang, Weijun
    Zhou, Chaorong
    Wu, Meimei
    Meng, Zijie
    Li, Wanglin
    Cao, Jie
    [J]. BMC GASTROENTEROLOGY, 2023, 23 (01)
  • [47] Detection and genomic analysis of BRAF fusions in Juvenile Pilocytic Astrocytoma through the combination and integration of multi-omic data
    Zwaig, Melissa
    Baguette, Audrey
    Hu, Bo
    Johnston, Michael
    Lakkis, Hussein
    Nakada, Emily M. M.
    Faury, Damien
    Juretic, Nikoleta
    Ellezam, Benjamin
    Weil, Alexandre G. G.
    Karamchandani, Jason
    Majewski, Jacek
    Blanchette, Mathieu
    Taylor, Michael D. D.
    Gallo, Marco
    Kleinman, Claudia L. L.
    Jabado, Nada
    Ragoussis, Jiannis
    [J]. BMC CANCER, 2022, 22 (01)
  • [48] Detection and genomic analysis of BRAF fusions in Juvenile Pilocytic Astrocytoma through the combination and integration of multi-omic data
    Melissa Zwaig
    Audrey Baguette
    Bo Hu
    Michael Johnston
    Hussein Lakkis
    Emily M. Nakada
    Damien Faury
    Nikoleta Juretic
    Benjamin Ellezam
    Alexandre G. Weil
    Jason Karamchandani
    Jacek Majewski
    Mathieu Blanchette
    Michael D. Taylor
    Marco Gallo
    Claudia L. Kleinman
    Nada Jabado
    Jiannis Ragoussis
    [J]. BMC Cancer, 22
  • [49] Systemic Lupus Erythematosus Biomarkers Identified Using Multi-Omic and Artificial Intelligence Analysis through Interrogative Biology
    Grund, Eric
    Zhang, Lixia
    Rodrigues, Leonardo
    Akmaev, Viatcheslav
    Sarangarajan, Rangaprasad
    Kiebish, Michael
    Narain, Niven
    Gilkeson, Gary S.
    [J]. ARTHRITIS & RHEUMATOLOGY, 2018, 70
  • [50] Identification of human glucocorticoid response markers using integrated multi-omic analysis from a randomized crossover trial
    Chantzichristos, Dimitrios
    Svensson, Per-Arne
    Garner, Terence
    Glad, Camilla A. M.
    Walker, Brian R.
    Bergthorsdottir, Ragnhildur
    Ragnarsson, Oskar
    Trimpou, Penelope
    Stimson, Roland H.
    Borresen, Stina W.
    Feldt-Rasmussen, Ulla
    Jansson, Per-Anders
    Skrtic, Stanko
    Stevens, Adam
    Johannsson, Gudmundur
    [J]. ELIFE, 2021, 10