Homogenization of a quasilinear parabolic equation with vanishing viscosity

被引:9
|
作者
Dalibard, Anne-Laure [1 ]
机构
[1] Univ Paris 09, CEREMADE, UMR 7534, F-75775 Paris 16, France
来源
关键词
homogenization; parabolic scalar conservation law;
D O I
10.1016/j.matpur.2006.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the limit as epsilon --> 0 of the solutions of the equation partial derivative(t)u(epsilon) + div(x)[A(x/epsilon, u(epsilon))],- epsilon Delta(x)u(epsilon) = 0. After computing the homogenized problem thanks to formal double-scale expansions, we prove that as epsilon goes to 0, u(epsilon) behaves in L-loc(2) as v(x/epsilon, (u) over bar (t, x)), to where v is determined by a cell problem and (u) over bar is the solution of the homogenized problem. The proof relies on the use of two-scale Young measures, a generalization of Young measures adapted to two-scale homogenization problems. (C) 2006 Elsevier SAS. All rights reserved.
引用
收藏
页码:133 / 154
页数:22
相关论文
共 50 条
  • [31] A strongly degenerate quasilinear equation:: The parabolic case
    Andreu, F
    Caselles, V
    Mazón, JM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (03) : 415 - 453
  • [32] Quasilinear generalized parabolic Anderson model equation
    I. Bailleul
    A. Debussche
    M. Hofmanová
    Stochastics and Partial Differential Equations: Analysis and Computations, 2019, 7 : 40 - 63
  • [33] CONDITIONS FOR EXISTENCE OF A SOLUTION TO A QUASILINEAR PARABOLIC EQUATION
    FILIPPOV, AF
    DOKLADY AKADEMII NAUK SSSR, 1961, 141 (03): : 568 - &
  • [34] Determination of a diffusion coefficient in a quasilinear parabolic equation
    Kanca, Fatma
    OPEN MATHEMATICS, 2017, 15 : 77 - 91
  • [35] Quasilinear generalized parabolic Anderson model equation
    Bailleul, I.
    Debussche, A.
    Hofmanova, M.
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2019, 7 (01): : 40 - 63
  • [36] A QUASILINEAR PARABOLIC EQUATION WITH INHOMOGENEOUS DENSITY AND ABSORPTION
    Liu, Ch.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2010, 36 (02): : 239 - 251
  • [37] THE NONLOCAL STEFAN PROBLEM FOR QUASILINEAR PARABOLIC EQUATION
    Takhirov, J. O.
    Turaev, R. N.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2012, (03): : 8 - 16
  • [39] Rational Approximation and Universality for a Quasilinear Parabolic Equation
    Gauthier, P. M.
    Tarkhanov, N.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2008, 43 (06): : 353 - 364
  • [40] Optimal control for the coefficients of a quasilinear parabolic equation
    Tagiyev, R. K.
    AUTOMATION AND REMOTE CONTROL, 2009, 70 (11) : 1814 - 1826