Compressible Navier-Stokes Equations on Thin Domains

被引:17
|
作者
Maltese, David [1 ]
Novotny, Antonin [1 ]
机构
[1] Univ Sud Toulon Var, EA 2134, IMATH, F-83957 La Garde, France
关键词
Compressible Navier-Stokes system; dimension reduction; thin domains; INEQUALITY; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00021-014-0177-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the barotropic Navier-Stokes system describing the motion of a compressible viscous fluid confined to a straight layer Omega(epsilon) = omega x (0, epsilon), where omega is a particular 2-D domain (a periodic cell, bounded domain or the whole 2-D space). We show that the weak solutions in the 3D domain converge to a (strong) solutions of the 2-D Navier-Stokes system on omega as epsilon -> 0 on the maximal life time of the strong solution.
引用
收藏
页码:571 / 594
页数:24
相关论文
共 50 条