Spreading of spiral spectrum of Bessel-Gaussian beam in non-Kolmogorov turbulence

被引:50
|
作者
Ou, Jun [1 ]
Jiang, Yuesong [1 ]
Zhang, Jiahua [2 ]
Tang, Hua [1 ]
He, Yuntao [1 ]
Wang, ShuaiHui [1 ]
Liao, Juan [3 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Ctr Earth Observat & Digital Earth, Beijing 100094, Peoples R China
[3] Huichang Expt Sch, Ganzhou 342600, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Spiral spectrum; Bessel-Gaussian beam; Non-Kolmogorov turbulence; Channel capacity; ORBITAL ANGULAR-MOMENTUM; ATMOSPHERIC-TURBULENCE; OPTICAL VORTICES; VORTEX BEAMS; PROPAGATION; STATES;
D O I
10.1016/j.optcom.2013.12.069
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The analytical formulas for the spiral spectrum of Bessel-Gaussian (BG) beam and the channel capacity of a communication system based on orbital angular momentum (DAM) in non-Kolmogorov turbulence have been derived. The influence of the azimuthal index, wavelength, exponent parameter alpha, inner scale and outer scale on spiral spectrum is investigated. Numerical results reveal that a spiral spectrum of BG beam in non-Kolmogorov turbulence is more affected by turbulence with larger azimuthal index, shorter wavelength, smaller inner scale and larger outer scale. It is demonstrated that the spiral spectrum also depends on the propagation distance and structure constant. The spiral spectrum of BG beam in non-Kolmogorov turbulence spreads significantly with the increasing of exponent parameter alpha and spreads slightly after reaching a maximum point. It is showed that the variation of channel capacity of the DAM-based communication system, with respect to parameter alpha, has the same trend as the spiral spectrum. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 99
页数:5
相关论文
共 50 条
  • [31] AVERAGE SPREADING OF APERTURED LASER BEAMS WITH BEAM DISTORTIONS IN NON-KOLMOGOROV TURBULENCE
    Tao, R. -M.
    Si, L.
    Ma, Y. -X.
    Zhou, P.
    Liu, Z. -J.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2012, 26 (8-9) : 1237 - 1247
  • [32] Spreading of partially coherent Hermite-Gaussian beams through a non-Kolmogorov turbulence
    Wu, Guohua
    Luo, Bin
    Yu, Song
    Dang, Anhong
    Zhao, Tonggang
    Guo, Hong
    OPTIK, 2011, 122 (22): : 2029 - 2033
  • [33] Propagation of a twist Gaussian-Schell model beam in non-Kolmogorov turbulence
    Cui, Yan
    Wang, Fei
    Cai, Yangjian
    OPTICS COMMUNICATIONS, 2014, 324 : 108 - 113
  • [34] Spreading Regions of Truncated Beams in Non-Kolmogorov Turbulence
    Chen Xiaowen
    Li Binzhong
    Tang Mingyue
    Deng Hanling
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (01)
  • [35] Anisotropic non-Kolmogorov turbulence effect on transmittance of multi-Gaussian beam
    Ata, Yalcin
    Baykal, Yahya
    WAVES IN RANDOM AND COMPLEX MEDIA, 2020, 30 (01) : 118 - 129
  • [36] Temporal power spectrum of irradiance fluctuations for a Gaussian-beam wave propagating through non-Kolmogorov turbulence
    Tan, Liying
    Zhai, Chao
    Yu, Siyuan
    Ma, Jing
    Lu, Gaoyuan
    OPTICS EXPRESS, 2015, 23 (09): : 11250 - 11263
  • [37] Quantitative Analysis of the Effect of Atmospheric Turbulence on a Bessel-Gaussian Beam
    Wen, Wei
    PHOTONICS, 2023, 10 (08)
  • [38] Bessel-Gaussian beam scintillation index in maritime atmospheric turbulence
    F. Boufalah
    L. Dalil-Essakali
    A. Belafhal
    Optical and Quantum Electronics, 57 (3)
  • [39] Optimization of the probability of orbital angular momentum for Laguerre-Gaussian beam in Kolmogorov and non-Kolmogorov turbulence
    Yuan, Yangsheng
    Liu, Dong
    Zhou, Zhengxian
    Xu, Huafeng
    Qu, Jun
    Cai, Yangjian
    OPTICS EXPRESS, 2018, 26 (17): : 21861 - 21871
  • [40] Effect of Non-Kolmogorov Turbulence on the Spreading of Polychromatic Partially Coherent Hermite–Gaussian Array Beams
    Yongping Huang
    Zenghui Gao
    Guangpu Zhao
    Fanhou Wang
    Zhichun Duan
    Qiang Liu
    Journal of Russian Laser Research, 2014, 35 : 383 - 390