Practical quantum-enhanced receivers for classical communication

被引:28
|
作者
Burenkov, I. A. [1 ,2 ,3 ]
Jabir, M. V. [1 ]
Polyakov, S. V. [1 ,4 ]
机构
[1] NIST, Gaithersburg, MD 20899 USA
[2] Joint Quantum Inst, College Pk, MD 20742 USA
[3] Univ Maryland, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
来源
AVS QUANTUM SCIENCE | 2021年 / 3卷 / 02期
基金
美国国家科学基金会;
关键词
BOSE-EINSTEIN CONDENSATE; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; BACKACTION-EVADING MEASUREMENT; RADIATION-PRESSURE; OPTOMECHANICAL CAVITY; NONDEMOLITION MEASUREMENT; SQUEEZED-LIGHT; NOISE CANCELLATION; ATOMIC-COLLISIONS; SHOT-NOISE;
D O I
10.1116/5.0036959
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Communication is an integral part of human life. Today, optical pulses are the preferred information carriers for long-distance communication. The exponential growth in data leads to a "capacity crunch" in the underlying physical systems. One of the possible methods to deter the exponential growth of physical resources for communication is to use quantum, rather than classical measurement at the receiver. Quantum measurement improves the energy efficiency of optical communication protocols by enabling discrimination of optical coherent states with the discrimination error rate below the shot-noise limit. In this review article, the authors focus on quantum receivers that can be practically implemented at the current state of technology, first and foremost displacement-based receivers. The authors present the experimentalist view on the progress in quantum-enhanced receivers and discuss their potential.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Quantum-Enhanced Transmittance Sensing
    Gong, Zihao
    Rodriguez, Nathaniel
    Gagatsos, Christos N.
    Guha, Saikat
    Bash, Boulat A.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2023, 17 (02) : 473 - 490
  • [22] Quantum-enhanced absorption refrigerators
    Luis A. Correa
    José P. Palao
    Daniel Alonso
    Gerardo Adesso
    Scientific Reports, 4
  • [23] Quantum-enhanced Doppler lidar
    Maximilian Reichert
    Roberto Di Candia
    Moe Z. Win
    Mikel Sanz
    npj Quantum Information, 8
  • [24] Quantum-Enhanced Pattern Recognition
    Ortolano G.
    Napoli C.
    Harney C.
    Pirandola S.
    Leonetti G.
    Boucher P.
    Losero E.
    Genovese M.
    Ruo-Berchera I.
    Physical Review Applied, 2023, 20 (02)
  • [25] Quantum-enhanced Doppler lidar
    Reichert, Maximilian
    Di Candia, Roberto
    Win, Moe Z.
    Sanz, Mikel
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [26] Quantum-Enhanced Machine Learning
    Dunjko, Vedran
    Taylor, Jacob M.
    Briegel, Hans J.
    PHYSICAL REVIEW LETTERS, 2016, 117 (13)
  • [27] Quantum-enhanced nonlinear microscopy
    Catxere A. Casacio
    Lars S. Madsen
    Alex Terrasson
    Muhammad Waleed
    Kai Barnscheidt
    Boris Hage
    Michael A. Taylor
    Warwick P. Bowen
    Nature, 2021, 594 : 201 - 206
  • [28] Quantum-enhanced plenoptic imaging
    Massaroa, Gianlorenzo
    Di Lena, Francesco
    Giannellaa, Davide
    Pepea, Francesco
    Scattarella, Francesco
    Vasyukov, Sergii
    D'Angelo, Milena
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING XX, 2022, 12238
  • [29] Optimal quantum-enhanced interferometry
    Lang, Matthias D.
    Caves, Carlton M.
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [30] Parallel Quantum-Enhanced Sensing
    Dowran, Mohammadjavad
    Win, Aye L.
    Jain, Umang
    Kumar, Ashok
    Lawrie, Benjamin J.
    Pooser, Raphael C.
    Marino, Alberto M.
    ACS PHOTONICS, 2024, 11 (08): : 3037 - 3045