Practical quantum-enhanced receivers for classical communication

被引:28
|
作者
Burenkov, I. A. [1 ,2 ,3 ]
Jabir, M. V. [1 ]
Polyakov, S. V. [1 ,4 ]
机构
[1] NIST, Gaithersburg, MD 20899 USA
[2] Joint Quantum Inst, College Pk, MD 20742 USA
[3] Univ Maryland, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
来源
AVS QUANTUM SCIENCE | 2021年 / 3卷 / 02期
基金
美国国家科学基金会;
关键词
BOSE-EINSTEIN CONDENSATE; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; BACKACTION-EVADING MEASUREMENT; RADIATION-PRESSURE; OPTOMECHANICAL CAVITY; NONDEMOLITION MEASUREMENT; SQUEEZED-LIGHT; NOISE CANCELLATION; ATOMIC-COLLISIONS; SHOT-NOISE;
D O I
10.1116/5.0036959
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Communication is an integral part of human life. Today, optical pulses are the preferred information carriers for long-distance communication. The exponential growth in data leads to a "capacity crunch" in the underlying physical systems. One of the possible methods to deter the exponential growth of physical resources for communication is to use quantum, rather than classical measurement at the receiver. Quantum measurement improves the energy efficiency of optical communication protocols by enabling discrimination of optical coherent states with the discrimination error rate below the shot-noise limit. In this review article, the authors focus on quantum receivers that can be practically implemented at the current state of technology, first and foremost displacement-based receivers. The authors present the experimentalist view on the progress in quantum-enhanced receivers and discuss their potential.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] QUANTUM-ENHANCED SECURE DELEGATED CLASSICAL COMPUTING
    Dunjko, Vedhan
    Kapourniotis, Theodoros
    Kashefi, Elham
    QUANTUM INFORMATION & COMPUTATION, 2016, 16 (1-2) : 61 - 86
  • [2] Integrating Quantum Simulation for Quantum-Enhanced Classical Network Emulation
    DiAdamo, Stephen
    Noetzel, Janis
    Sekavcnik, Simon
    Bassoli, Riccardo
    Ferrara, Roberto
    Deppe, Christian
    Fitzek, Frank H. P.
    Boche, Holger
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) : 3922 - 3926
  • [3] Belief propagation with quantum messages for quantum-enhanced classical communications
    Narayanan Rengaswamy
    Kaushik P. Seshadreesan
    Saikat Guha
    Henry D. Pfister
    npj Quantum Information, 7
  • [4] Belief propagation with quantum messages for quantum-enhanced classical communications
    Rengaswamy, Narayanan
    Seshadreesan, Kaushik P.
    Guha, Saikat
    Pfister, Henry D.
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [5] Quantum-Enhanced Blockchain: A Secure and Practical Blockchain Scheme
    Liu, Ang
    Chen, Xiu-Bo
    Xu, Gang
    Wang, Zhuo
    Feng, Xuefen
    Feng, Huamin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 259 - 277
  • [6] Demonstration of quantum-enhanced rangefinding robust against classical jamming
    Mrozowski, M. P.
    Murchie, R. J.
    Jeffers, J.
    Pritchard, J. D.
    OPTICS EXPRESS, 2024, 32 (03) : 2916 - 2928
  • [7] Quantum-enhanced algorithms for classical target detection in complex environments
    Weichman, Peter B.
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [8] Classical and quantum cost of measurement strategies for quantum-enhanced auxiliary field quantum Monte Carlo
    Kiser, Matthew
    Schroeder, Anna
    Anselmetti, Gian-Luca R.
    Kumar, Chandan
    Moll, Nikolaj
    Streif, Michael
    Vodola, Davide
    NEW JOURNAL OF PHYSICS, 2024, 26 (03):
  • [9] Defence against adversarial attacks using classical and quantum-enhanced Boltzmann machinesy
    Kehoe A.
    Wittek P.
    Xue Y.
    Pozas-Kerstjens A.
    Machine Learning: Science and Technology, 2021, 2 (04):
  • [10] Quantum-Enhanced Optomechanical Magnetometry
    Bilek, Jan
    Li, Bei-Bei
    Hoff, Ulrich B.
    Madsen, Lars
    Forstner, Stefan
    Prakash, Varun
    Schafermeier, Clemens
    Gehring, Tobias
    Bowen, Warwick P.
    Andersen, Ulrik L.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,