Phase-isometries between normed spaces

被引:18
|
作者
Ilisevic, Dijana [1 ]
Omladic, Matjaz [2 ]
Turnsek, Aleksej [2 ,3 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Zagreb, Croatia
[2] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Ljubljana, Fac Maritime Studies & Transport, Pot Pomorscakov 4, Portoroz 6320, Slovenia
关键词
Phase-isometry; Wigner's theorem; Isometry; Real normed space; Projective geometry; WIGNERS THEOREM; ELEMENTARY PROOF; ORTHOGONALITY;
D O I
10.1016/j.laa.2020.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X and Y be real normed spaces and f : X -> Y a surjective mapping. Then f satisfies {parallel to f (x) + f (y)parallel to, parallel to f (x) - f(y)parallel to} = {parallel to x + y parallel to, parallel to x - y parallel to}, x,y is an element of X, if and only if f is phase equivalent to a surjective linear isometry, that is, f = sigma U, where U: X -> Y is a surjective linear isometry and sigma: X -> {-1, 1}. This is a Wigner's type result for real normed spaces. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 111
页数:13
相关论文
共 50 条
  • [31] Isometries and Additive Mapping on the Unit Spheres of Normed Spaces
    Rui Dong WANG
    Xu Jian HUANG
    ActaMathematicaSinica, 2017, 33 (10) : 1431 - 1442
  • [32] Isometries and Additive Mapping on the Unit Spheres of Normed Spaces
    Wang, Rui Dong
    Huang, Xu Jian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (10) : 1431 - 1442
  • [33] Isometries and Additive Mapping on the Unit Spheres of Normed Spaces
    Rui Dong WANG
    Xu Jian HUANG
    Acta Mathematica Sinica,English Series, 2017, (10) : 1431 - 1442
  • [34] Characterizations on isometries in linear n-normed spaces
    Chen, Xiao Yun
    Song, Mei Mei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1895 - 1901
  • [35] LINEAR ISOMETRIES OF SOME NORMED SPACES OF ANALYTIC-FUNCTIONS
    NOVINGER, WP
    OBERLIN, DM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1985, 37 (01): : 62 - 74
  • [36] On linear isometries and ε-isometries between Banach spaces
    Zhou, Yu
    Zhang, Zihou
    Liu, Chunyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) : 754 - 764
  • [37] Nonlinear (m,∞)-isometries and (m,∞)-expansive (contractive) mappings on normed spaces
    Ayed Al-Ahmadi, Aydah Mohammed
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01):
  • [38] ISOMETRIES BETWEEN TEICHMULLER SPACES
    EARLE, CJ
    KRA, I
    DUKE MATHEMATICAL JOURNAL, 1974, 41 (03) : 583 - 591
  • [39] Isometries between Sobolev spaces
    Biegert, Markus
    Nittka, Robin
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (17-18) : 2059 - 2077
  • [40] Isometries between leaf spaces
    Alexandrino, Marcos M.
    Radeschi, Marco
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 193 - 201