Phase-isometries between normed spaces

被引:18
|
作者
Ilisevic, Dijana [1 ]
Omladic, Matjaz [2 ]
Turnsek, Aleksej [2 ,3 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Zagreb, Croatia
[2] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Ljubljana, Fac Maritime Studies & Transport, Pot Pomorscakov 4, Portoroz 6320, Slovenia
关键词
Phase-isometry; Wigner's theorem; Isometry; Real normed space; Projective geometry; WIGNERS THEOREM; ELEMENTARY PROOF; ORTHOGONALITY;
D O I
10.1016/j.laa.2020.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X and Y be real normed spaces and f : X -> Y a surjective mapping. Then f satisfies {parallel to f (x) + f (y)parallel to, parallel to f (x) - f(y)parallel to} = {parallel to x + y parallel to, parallel to x - y parallel to}, x,y is an element of X, if and only if f is phase equivalent to a surjective linear isometry, that is, f = sigma U, where U: X -> Y is a surjective linear isometry and sigma: X -> {-1, 1}. This is a Wigner's type result for real normed spaces. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 111
页数:13
相关论文
共 50 条
  • [1] Phase-isometries on real normed spaces
    Tan, Dongni
    Huang, Xujian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (01)
  • [2] On phase-isometries between the positive cones of continuous function spaces
    Sun, Longfa
    Sun, Yinghua
    Dai, Duanxu
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (01)
  • [3] On ε-phase-isometries between the positive cones of continuous function spaces
    Wang, Wenting
    An, Aimin
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [4] Phase-isometries between two lp(Γ,H)-type spaces
    Zeng, Xianhua
    Huang, Xujian
    AEQUATIONES MATHEMATICAE, 2020, 94 (05) : 793 - 802
  • [5] On phase-isometries between the positive cones of continuous function spaces
    Longfa Sun
    Yinghua Sun
    Duanxu Dai
    Annals of Functional Analysis, 2023, 14
  • [6] Phase-isometries on the unit sphere of CL-spaces
    Tan, Dongni
    Zhang, Fan
    Huang, Xujian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (02)
  • [7] ISOMETRIES IN NORMED SPACES
    BAKER, JA
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (06): : 655 - &
  • [8] On phase-isometries between the positive cones of c0
    Sun, Longfa
    Sun, Yinghua
    Dai, Duanxu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025, 56 (01): : 210 - 217
  • [9] On phase-isometries between the positive cones of c0
    Sun, Longfa
    Sun, Yinghua
    Dai, Duanxu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [10] ISOMETRIES BETWEEN NORMED SPACES WHICH ARE SURJECTIVE ON A SPHERE
    Wang, Ruidong
    ILLINOIS JOURNAL OF MATHEMATICS, 2009, 53 (02) : 575 - 580