STRONGLY FULLY INVARIANT-EXTENDING MODULAR LATTICES

被引:1
|
作者
Albu, Toma [1 ]
Kara, Yeliz [2 ]
Tercan, Adnan [3 ]
机构
[1] Romanian Acad, Simion Stoilow Inst Math, POB 1 764, RO-010145 Bucharest 1, Romania
[2] Bursa Uludag Univ, Dept Math, TR-16059 Bursa, Turkey
[3] Hacettepe Univ, Dept Math, Beytepe Campus, TR-06532 Ankara, Turkey
关键词
Modular lattice; upper continuous lattice; linear morphism of lattices; fully invariant element; fully invariant-extending lattice; strongly fully invariant-extending lattice;
D O I
10.2989/16073606.2020.1861488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a natural continuation of our previous joint paper [Albu, Kara, Tercan, Fully invariant-extending modular lattices, and applications (I), J. Algebra 517 (2019), 207-222], where we introduced and investigated the notion of a fully invariant-extending lattice, the latticial counterpart of a fully invariant-extending module. In this paper we introduce and investigate the latticial counter-part of the concept of a strongly FI-extending module defined by Birkenmeier, Park, Rizvi (2002) as a module M having the property that every fully invariant submodule of M is essential in a fully invariant direct summand of M. Our main tool in doing so, is again the very useful concept of a linear morphism of lattices introduced in the literature by Albu and Iosif (2013).
引用
收藏
页码:357 / 367
页数:11
相关论文
共 50 条
  • [1] Fully invariant-extending modular lattices, and applications (I)
    Albu, Toma
    Kara, Yeliz
    Tercan, Adnan
    JOURNAL OF ALGEBRA, 2019, 517 : 207 - 222
  • [2] STRONGLY EXTENDING MODULAR LATTICES
    Atani, Shahabaddin ebrahimi
    Khoramdel, Mehdi
    Hesari, Saboura dolati pish
    Alipour, Mahsa nikmard rostam
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (04): : 541 - 553
  • [3] Projection Invariant-Extending Property on Dominant Submodules
    Eroglu, Nuray
    Kara, Yeliz
    Tercan, Adnan
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2022, 46 (02) : 173 - 183
  • [4] An approach to extending and lifting modules by modular lattices
    Keskin, D
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2002, 33 (01): : 81 - 86
  • [5] The strongly invariant extending property for abelian groups
    Chekhlov, Andrey R.
    Danchev, Peter V.
    QUAESTIONES MATHEMATICAE, 2019, 42 (08) : 997 - 1017
  • [6] INVARIANT LATTICES AND MODULAR DECOMPOSITION OF IRREDUCIBLE REPRESENTATIONS
    REINHARDT, U
    SCHMID, P
    JOURNAL OF ALGEBRA, 1984, 87 (01) : 89 - 104
  • [7] Amalgamation rings and the fully invariant extending property
    Farshad, N.
    Sabet, Sh A. Safari
    Moussavi, A.
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (04) : 1565 - 1574
  • [8] The fully invariant extending property for abelian groups
    Birkenmeier, GF
    Calugareanu, G
    Fuchs, L
    Goeters, HP
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (02) : 673 - 685
  • [9] DIRECT SUMMANDS OF GOLDIE EXTENDING ELEMENTS IN MODULAR LATTICES
    Shroff, Rupal
    MATHEMATICA BOHEMICA, 2022, 147 (03): : 359 - 368
  • [10] Strongly compactly atomistic orthomodular lattices and modular ortholattices
    Riecanová, Z
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998: QUANTUM STRUCTURES II, 1998, : 143 - 153