STRONGLY EXTENDING MODULAR LATTICES

被引:0
|
作者
Atani, Shahabaddin ebrahimi [1 ]
Khoramdel, Mehdi [1 ]
Hesari, Saboura dolati pish [1 ]
Alipour, Mahsa nikmard rostam [1 ]
机构
[1] Univ Guilan, Dept Math, POB 1914, Rasht, Iran
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2025年 / 49卷 / 04期
关键词
Modular lattice; upper continuous lattice; linear lattice morphism; fully invariant element; strongly extending lattice; OSOFSKY-SMITH THEOREM;
D O I
10.46793/KgJMat2504.541A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, our purpose is to initiate the study of the concept of strongly extending modular lattices based on the similar notion of strongly extending modules. We will prove some basic properties of strongly extending modular lattices and employ this results to give applications to the category of modules with a fixed hereditary torsion class and Grothendieck categories.
引用
收藏
页码:541 / 553
页数:13
相关论文
共 50 条
  • [1] STRONGLY FULLY INVARIANT-EXTENDING MODULAR LATTICES
    Albu, Toma
    Kara, Yeliz
    Tercan, Adnan
    QUAESTIONES MATHEMATICAE, 2022, 45 (03) : 357 - 367
  • [2] An approach to extending and lifting modules by modular lattices
    Keskin, D
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2002, 33 (01): : 81 - 86
  • [3] DIRECT SUMMANDS OF GOLDIE EXTENDING ELEMENTS IN MODULAR LATTICES
    Shroff, Rupal
    MATHEMATICA BOHEMICA, 2022, 147 (03): : 359 - 368
  • [4] Strongly compactly atomistic orthomodular lattices and modular ortholattices
    Riecanová, Z
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998: QUANTUM STRUCTURES II, 1998, : 143 - 153
  • [5] Hecke actions on certain strongly modular genera of lattices
    Gabriele Nebe
    Maria Teider
    Archiv der Mathematik, 2005, 84 : 46 - 56
  • [6] Hecke actions on certain strongly modular genera of lattices
    Nebe, G
    Teider, M
    ARCHIV DER MATHEMATIK, 2005, 84 (01) : 46 - 56
  • [7] Fully invariant-extending modular lattices, and applications (I)
    Albu, Toma
    Kara, Yeliz
    Tercan, Adnan
    JOURNAL OF ALGEBRA, 2019, 517 : 207 - 222
  • [8] CONGRUENCE LATTICES OF MODULAR LATTICES
    SCHMIDT, ET
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 43 (1-2): : 129 - 134
  • [9] The number of representations of integers by 4-dimensional strongly N-modular lattices
    Ho Yun Jung
    Chang Heon Kim
    Kyoungmin Kim
    Soonhak Kwon
    The Ramanujan Journal, 2022, 57 : 1253 - 1275
  • [10] The number of representations of integers by 4-dimensional strongly N-modular lattices
    Jung, Ho Yun
    Kim, Chang Heon
    Kim, Kyoungmin
    Kwon, Soonhak
    RAMANUJAN JOURNAL, 2022, 57 (04): : 1253 - 1275