On incidence coloring for some cubic graphs

被引:25
|
作者
Shiu, WC [1 ]
Lam, PCB [1 ]
Chen, DL [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
cubic graph; incidence coloring; restrained decomposition;
D O I
10.1016/S0012-365X(01)00457-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1993, Brualdi and Massey conjectured that every graph can be incidence-colored with Delta+2 colors, where Delta is the maximum degree of a graph. Although this conjecture was solved in the negative by an example in I. Algor and N. Alon (Discrete Math. 75 (1989) 11) it might hold for some special classes of graphs. In this paper, we consider graphs with maximum degree Delta = 3 and show that the conjecture holds for cubic Hamiltonian graphs and some other cubic graphs. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 50 条
  • [21] On incidence coloring and star arboricity of graphs
    Guiduli, B
    [J]. DISCRETE MATHEMATICS, 1997, 163 (1-3) : 275 - 278
  • [22] Incidence coloring of Cartesian product graphs
    Shiau, Alexander Chane
    Shiau, Tzong-Huei
    Wang, Yue-Li
    [J]. INFORMATION PROCESSING LETTERS, 2015, 115 (10) : 765 - 768
  • [23] The incidence coloring number of Halin graphs and outerplanar graphs
    Wang, SD
    Chen, DL
    Pang, SC
    [J]. DISCRETE MATHEMATICS, 2002, 256 (1-2) : 397 - 405
  • [24] On incidence choosability of cubic graphs
    Kang, Sungsik
    Park, Boram
    [J]. DISCRETE MATHEMATICS, 2019, 342 (06) : 1828 - 1837
  • [25] Equitable coloring of corona products of cubic graphs is harder than ordinary coloring
    Furmanczyk, Hanna
    Kubale, Marek
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2016, 10 (02) : 333 - 347
  • [26] Strong edge-coloring for cubic Hahn graphs
    Chang, Gerard Jennhwa
    Liu, Daphne Der-Fen
    [J]. DISCRETE MATHEMATICS, 2012, 312 (08) : 1468 - 1475
  • [27] Optimal acyclic edge-coloring of cubic graphs
    Andersen, Lars Dovling
    Macajova, Edita
    Mazak, Jan
    [J]. JOURNAL OF GRAPH THEORY, 2012, 71 (04) : 353 - 364
  • [28] S-packing coloring of cubic Halin graphs
    Tarhini, Batoul
    Togni, Olivier
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 349 : 53 - 58
  • [29] Incidence coloring of k-degenerated graphs
    Dolama, MH
    Sopena, É
    Zhu, XD
    [J]. DISCRETE MATHEMATICS, 2004, 283 (1-3) : 121 - 128
  • [30] On Indicated Coloring of Some Classes of Graphs
    Francis, P.
    Raj, S. Francis
    Gokulnath, M.
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 : 73 - 80